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Abstract
As our world faces an increasing number of threats to its environment, it is becoming
more important than ever to find ways to reduce our impact on Earth’s ecosystems.
Computer science may be able to help contribute to this cause by creating realistic
simulations of nature such that scientists can analyze the impact climate change,
pollution, hunting, etc. will have on an ecosystem.

In this paper we create a framework, now known as Ecotwin, which models ar-
tificial animals. The agents must manage both an energy need and a libido need
in order to maximize their reward. The focus of our work lies in investigating the
role played by evolution and learning in ecosystems, namely: is the combination of
reinforcement learning and evolutionary algorithms needed for survival?

To investigate this, we construct an environment containing lethal food whose inges-
tion may be stopped by a specific gene. As a gene cannot be learned, we find that
asexual reproduction is a less reliable reproductive method than sexual reproduction
in dangerous environments. In environments with few threats, we instead find that
asexual reproduction can develop a great set of genes through higher birth rates and
higher internal competition.

In addition to our main focus on evolution, we also implemented a more realistic
spread of plants – a food source for the prey species in predator-prey systems. The
more advanced nature of these plants makes them more difficult to balance, however
we find that with the correct parameters it remains possible to simulate population
dynamics similar to those of stable oscillating three-species Lotka-Volterra equa-
tions. With different species of plants it is also possible to show the competition of
plants adhering to these population dynamics.

Keywords: computer science, engineering, thesis, reinforcement learning, evolution,
agent-based, simulation, animats.
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1
Introduction

Human society makes use of a large quantity of plants and animals in order to
produce various items and foods. These animals may either be hunted in nature
or raised as livestock, and the plants may similarly either be harvested in nature
or on farms. Regardless of whether it is an organism or a natural resource which
is extracted, the local ecosystem is disturbed and if the interference is too great,
the ecosystem risks collapsing. Research shows that climate change will negatively
affect animals’ health [1], and as the over-exploitation of animals already poses one
of the greatest risks of extinction to some species [2], it is all the more important to
find solutions to reduce our impact on ecosystems.

Analyzing the safe rates of exploiting species with living creatures is a very time-
consuming task and as natural habitats vary immensely, it is also a very complicated
task. If we could instead recreate realistic and useful ecosystems in a digital environ-
ment, scientists would be able to analyze interactions between species and humans
at a much faster pace – without first needing to grow plants and raise animals.

Historically, in order to analyze the stability of ecosystems, scientists have used
mathematical models to view how species’ populations interact and oscillate [3, 4, 5].
A flaw in this approach is that creatures are only considered on a population level
rather than on an individual level.

With the advances in computer science over the last decades, both in machine-
learning theory and in computing power, it is now possible to simulate predator-prey
systems through the use of agent-based machine-learning [6]. Recent research has
made use of this technique and concluded that training the predator and prey simul-
taneously increases the stability of the ecosystem [7, 8]. However, their implemen-
tations of reproduction have not related realistically to nature as sexual intercourse
has been represented by algorithms unrelated to the agents’ actions.

In this paper, we make the distinction between genotype and phenotype. Only
the genotype is passed on from generation to generation whereas the phenotype is
developed during an individual’s lifetime. With this distinction, we aim to adhere
closer to biology while also striving for stable population dynamics and intelligent
behaviour based on a combination of inherited reflexes and reinforcement learning.
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1. Introduction

1.1 Research Questions
Our work aims to capitalize on agent-based simulations’ presence of individuals and
populations. This combination makes it possible to both investigate how population-
wide changes affect its individuals, and to see how changes in an individual can
change its population. In this paper, we will focus on answering the following re-
search questions:

• Is there a purpose to death?
– Does death cause faster evolution?
– Is death particularly important in changing environments?

• Is sexual reproduction more advantageous for survival in some environments
and asexual reproduction in others?

• Does a combination of learning and evolution make survival in dangerous*
environment more likely?

*We define a dangerous environment as an environment where the following char-
acteristics can be seen:

1. Suppose the edibility of food changes over an individual’s lifetime. Any fixed
policy is likely to die due to not knowing when the food is edible.

2. Suppose some food is edible and some food is deadly. Then any individual with
no prior knowledge of the food’s edibility is likely to die due to accidentally
eating the deadly food.

In order to thrive in a dangerous environment, an individual should both be able
to learn when to eat food and what food to eat. We will thus also study whether
the combination of evolutionary algorithms and reinforcement-learning is able to
overcome situations where the presence of only one aspect falls short.

2



2
Background

Our project is part of a larger work on animats (Ecotwin) as part of a research
group at Chalmers University and Dynamic Topologies AB. The research group’s
common goal is to further the understanding of ecosystem simulations on individual-
and population-wide levels, and to create an open-source platform for simulating
multiagent-based simulations of ecosystems.

This paper starts with a section briefly describing the areas of reinforcement learning
and evolutionary algorithms, as well as our animat model. Later sections go into
more theoretical details, implementation details, analysis, and discussion regarding
the simulations using the animat model.

2.1 Reinforcement Learning

2.1.1 What Is It?
Reinforcement learning (RL) is a subclass of artificial intelligence (AI) and its goal
is to allow agents to perform tasks which will maximize cumulative rewards. These
rewards will be given to an agent performing an action based on the problem at
hand. For example, in Blackjack a player will lose if their hand adds up to higher
than 21 or if their hand is lower than the dealer’s hand. If the agent is given a
reward only when winning against the dealer, then the agent should learn to stop
drawing cards if the risk of going past 21 is too high - unless the dealer already has
a higher hand.

RL resembles human behaviour in that an agent will be equipped with a neural
network (NN) which will determine the best course of action, however the agent will
sometimes choose to try another action in order to see what might happen. This
could be likened to a football player shooting the ball with their left foot instead of
using their better right foot - but if the goalkeeper is not ready for this, it might
prove to give a better result! This is one of the key principles of RL: exploration;
although the output from the NN suggests one action is better, the agent may still
explore the possibilities in the hopes of discovering an unknown solution. The other
key concept of RL is exploitation, where an agent makes use of what they have
learned in order to take the best action as suggested by the NN.

RL can be a very powerful tool when looking for optimal behaviour in predictable

3



2. Background

environments, however not all situations are predictable in nature. Suppose that an
agent has lived all its life by feeding off red berries (strawberries, raspberries, red-
currant, etc), and then it discovers a new red berry which happens to be poisonous.
The previous experiences will tell the agent to eat the berry. Another example is
food which is poisonous when unripe, but safe when ripe. An agent which has eaten
only ripe fruit will not know of its side-effects and may die due to its previous ex-
periences telling it that the fruit is good, despite it being unripe and deadly! To
fight such situations, reflexes and instinct could prove useful – both of which can be
provided by evolution.

2.1.2 How It Works
The decision-making which occurs in reinforcement learning works by connecting
stimuli to actions. Depending on the outcome of the action, the agent is either
rewarded or punished. This allows the agents to learn through trial-and-error by
exploring its environment and experiencing which action is the best given a certain
situation [9].

The agent receives a sensory input (State) from its environment. Based on the
input, the agent then chooses an action and sends it back to the environment. As
a reaction to the agent’s action, the environment then provides the agent with a
reward that can be either positive or negative along with a set of new observations
[10]. This cycle is described in Figure 2.1.

Figure 2.1: The cognition cycle of an animat.

The action which the agent picks given its current state s is sampled from the
probability of the policy function Equation 2.1.

π(a|s) (2.1)
Since Equation 2.1 is a probability function determining the probability of each
action being picked the following equation must hold for all states:

∑
a∈A

π(a|s) = 1, ∀s ∈ S (2.2)

The return can be calculated in every timestep t by calculating the sum of future
rewards multiplied with a discount parameter γ given in Equation 2.3. γ determines

4



2. Background

how heavily weighted future rewards should be in comparison to the current reward.
An agent caring as much about future rewards as the reward it is receiving in its
current state st would correspond to γ = 1 and an agent only caring about the
currently experienced reward in state st would correspond to γ = 0.

Gt =
T∑
k=0

γkRt+k+1 (2.3)

As stated earlier the goal of the agent is to maximize its cumulative reward, which
corresponds to the expected return E[Gt]. In order to calculate the expected return
in state s, given that the agent follows policy π, we calculate the state-value function
vπ(s) as in Equation 2.4.

vπ(s) = Eπ[Gt|St = s],∀s ∈ S (2.4)

Since the agent samples an action from the policy function in Equation 2.1, the
value of a state s for an agent following a policy π given an action a is of interest.
With this function called the action-value function qπ(s, a) it is possible to calculate
the best possible action given the agent’s current state and policy:

qπ(s, a) = Eπ[Gt|St = s, At = a],∀s ∈ S,∀a ∈ A (2.5)

Finding the optimal policy π∗ yielding the maximum cumulative reward now corre-
sponds to maximizing the action-value function q∗(s, a) = max

π
qπ∗(s, a).

In the scope of this thesis we will only consider the model-free, on-policy algorithm
Proximal Policy Optimization (PPO).

2.1.3 Proximal Policy Optimization
PPO uses a policy gradient method in order to update its policy’s parameters θ.
Policy gradient methods update the parameters of the policy with gradient descent,
changing the parameters in the direction of some gradient estimator ∇J(θ) [9].

θt+1 = θt + α∇J(θ) (2.6)

PPO is based on an actor-critic algorithm which means that it learns to approximate
both the value function and the policy. This is done by calculating a loss based on
some advantage function A as in Equation 2.7 which determines the advantage of
performing action a in the state st [11].

At(a) = qπ(st, a)− vπ(st) (2.7)

This means that a loss can be calculated based on the current policy and some new
policy π′ performing action a in state st. The policy can then be updated in each
iteration as in Figure 2.2.
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Figure 2.2: Figure 2.1 updated to better represent the actor-critic method used in
PPO.

An issue with updating the parameters θ by updating the gradient based on this
loss is the risk of taking too big steps and thus changing the policy drastically.
PPO solves this by clipping the objective function of TRPO (Trust Region Policy
Approximation). Firstly, we denote the probability ratio rt(θ) in Equation 2.8.

rt(θ) = πθ(at|st)
πθold

(at|st)
(2.8)

The probability ratio rt(θ) is then used to calculate the clipped loss function in
Equation 2.9. The left side of the minimum function is the objective function pro-
posed in TRPO, the right side uses the hyper parameter ε to ensure that rt(θ) stays
within the range [1− ε, 1 + ε]

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (2.9)
PPO improves on the loss function further by incorporating the square loss of the
value function LV Ft (θ) as both the value function and policy might be used in the
neural network architecture. Additionally they add an entropy bonus S to make
sure that there is enough exploration for the policy to not too easily get stuck in
some local minimum. Adding these three components results in Equation 2.10.

LCLIP+V F+S(θ) = Et[LCLIPt (θ)− c1L
V F
t (θ) + c2S[πθ](st)] (2.10)

The hyperparameters c1 is the value function coefficient and c2 is the entropy func-
tion coefficient.
Lastly, PPO uses a version of generalized advantage estimation that is limited to T
timesteps to calculate the advantage function At as shown in Equation 2.11.

At = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (2.11)
Where δt is defined as in Equation 2.12

δt = rt + γv(st+1)− v(st) (2.12)
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2.1.4 Unity ML Agents
Unity is a game-engine designed to facilitate game- and software development. The
engine gives developers access to tools for easy graphics rendering which allows us
to visually show what happens during every timestep of a simulation. Furthermore,
Unity also comes with access to numerous packages – libraries with functioning com-
ponents, that is. ML Agents is one such package, designed to make reinforcement
learning available to developers who do not have the theoretical background which
may otherwise be needed. We choose to make use of Unity and ML Agents to save
time on developing own frameworks for reinforcement learning and graphics render-
ing.

One great advantage of using ML Agents, and one of the reasons for why we do, is
that ML Agents has built-in support for PPO. We are thus able to use a reinforce-
ment learning algorithm designed to avoid getting stuck in local optima, without
needing to implement it ourselves. There are a few reinforcement learning hyperpa-
rameters which are adjustable in the ML Agents configuration.

• buffer_size: Defines how many experiences should be collected before up-
dating the policy.

• batch_size: The number of experiences used for one update of the gradient
descent.

• num_epoch: The number of times the experience buffer is passed to the gradi-
ent descent.

• learning_rate: The learning rate α controlling how fast the policy’s param-
eters change as in Equation 2.6.

• learning_rate_schedule: Defines whether there should be a constant learn-
ing rate or if the learning rate would drop linearly.

• beta: The entropy constant c2 in Equation 2.10.
• epsilon: The clipping constant ε used for limiting the probability ratio in

Equation 2.9
• lambd: Hyper parameter λ is used to control the weight of the current value

estimate δt when calculating a new value estimate δt+1 as in Equation 2.12.

2.2 Evolutionary Algorithms
Based on Darwin’s theory of natural selection [12], evolutionary algorithms (EAs)
solve and optimize problems by breaking down actions into genes. One generation
will have a combination of genes which may or may not be a good solution to the
given problem. Next, the better a solution is, the higher is the chance that the
solution will be picked to create the next generation’s solution. As the solutions are
made up of genes, two solutions (or more) can be combined as is done with DNA
in nature. If there were only the combination of genes, then eventually all solutions
would converge to the point where all their genes are identical. Therefore, as in
nature, mutation is used to alter a small number of genes randomly.
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The idea of EAs is that features of good solutions will be passed on to follow-
ing generations and that bad features will be lost. By combining EAs with RL, we
can hope to recreate natural behaviour: reflexes and instincts inherited from parents
(EAs), as well as learning over a lifetime (RL). In the example of deadly unripened
fruit from subsection 2.1.1, one way that an agent may have adapted to prevent
dying would be to regurgitate its food when it tastes something it did not expect.
If the agent eats an unripe fruit which does not taste as the expected taste of the
ripe fruit, then by regurgitating the food, the agent will survive and, if lucky, it may
even be able to distinguish between unripe and ripe fruit in the future.

2.3 Animat
In order to distinguish biological animals and artificial animals, we make us of the
contraction of animal and material: animat [13]. In our context, animats will be
digital representations of different animals depending on the type of ecosystem we
wish to simulate. For the purposes of this paper, we make the assumption that we
are dealing with a carnivore predator and a herbivore prey.

2.3.1 Nervous System
Many bodily functions do not need to be controlled consciously [14]. For instance,
we do not decide when to digest eaten food or check if we are hungry. Instead, the
stomach is an example of an organ which is part of the autonomic nervous system.
These organs will operate autonomously and signal the central nervous system which
will in turn aid the organism in taking its decision on whether to rest, eat, hunt,
flee, etc.
For the purpose of full ecosystem simulations, it would be too resource-demanding
to create animats with nervous systems made out of autonomous organs. Therfore,
our research team has made some assumptions to find a compromise between nature
and processing power, where an animat’s nervous system is built as follows:

• Policy Network:
The animat’s brain, the component which decides what the animat will do.
Implemented with reinforcement learning.

• Reward Network:
The animat’s amygdala, the part of the brain which regulates the animat’s
feelings. Implemented with mathematical functions.

• Reflex Network:
A collection of the animat’s reflexes, all actions which are to be forced or
hindered in a certain situation. Implemented with evolutionary algorithms.

• Prediction Network:
The animat’s prefrontal cortex, the part of the brain which is able to plan
what will happen as a consequence of a certain action. Not yet implemented.

We refer to all these components as networks to reflect the nervous systems’ intended
implementation in computer science: artifical neural networks. However, as stated
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in the networks’ descriptions, not all the components are currently neural networks
in our model.

2.3.2 Genotype & Phenotype
A genotype refers to the ensemble of a gamete’s or zygote’s [15]. It is thus a collec-
tion of all characteristics passed down from a parent to its offspring. Genes affect
an individual’s life in various ways, for example, genes may increase the risk of cer-
tain diseases whereas some genes may promote faster muscle growth or a higher
metabolism. Genes never change during an individual’s lifetime, and so if an in-
dividual is born with poor genes, natural selection will favor the genes of other
individuals (through better hunting skills, choices of mates, etc.).

A phenotype refers to all the observable characteristics of an individual. An individ-
ual’s phenotype does change over its lifetime but are in some ways largely defined
by the individual’s genotype. For example, an individual may have the genes for
growing tall, but factors such as malnutrition and injury may hinder the individual
from growing fully. Phenotype is thus a combination of the individual’s genotype
and the individual’s interactions with its environment.

2.4 Predator-Prey Systems
Predator-prey systems refer to ecosystem simulations, either analytical models or
agent-based computer simulations, where there is an interaction between simulated
prey and predators which hunt the prey. Multiple predator-prey models exist, how-
ever the most well-known is known as the Lotka-Volterra equations.

2.4.1 Lotka-Volterra
Today referred to as Lotka-Volterra, this ecological model has been around for a long
time, created independently by two mathematicians: Lotka (1925) [3] and Volterra
(1926) [4] and is based on the interactions between predator and prey species. We
can describe these interactions as the hunting and eating of the prey species, and
thus such an interaction will on the one hand determine the growth of the predator
species, and on the other hand, the decline of the prey species. In this model, the
populations of the predator and prey species are described as follows:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(2.13)

Here, x and y are the number of prey and predators in the model respectively. The
prey reproduce at a rate of α in each step t and are killed at a rate β from each
interaction with a predator. Meanwhile, the predators reproduce at a rate δ from
each interaction with a prey and die at a rate of γ. This model assumes that the
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prey have an unlimited access to food and that there are no deaths due to accidents
or old age. On the other hand, the predators are dependent on the prey to survive
and reproduce, and their deaths are due to starvation or old age.

The Lotka-Volterra model makes it possible to represent oscillating population pat-
terns between species and predict if a species risks extinction. The model makes
certain unrealistic assumptions such as there being no internal competition between
prey/predators, but the work is still to this day used as a basis for developing more
complex models. In the classical predator-prey systems, only the populations as
a whole are considered. This means that it is possible to study changes in large
populations, but it is not possible to study interactions on an individual level. But
with the last decades of progress in computational power and efficiency, it is becom-
ing possible to create individual-based simulations. By using an individual-based
model, the hope is to achieve the population dynamics seen in non-agent-based mod-
els when the simulation’s scale is increased to encompass the appropriate number of
creatures.

2.4.2 Multiagent-based Simulations (Previous Research)
In recent years, researchers have already recreated the population dynamics of the
traditional Lotka-Volterra equations using multiagent-based reinforcement learning
[6], effectively introducing spatio-temporal characteristics to the predator-prey sys-
tems [8]. Although this is a great step in moving toward nature, there is still much
work required to minimize assumptions and make the simulations adhere to nature’s
laws.

By looking closer at recent implementations of agent-based predator-prey systems,
we see both similarities and differences in their approaches. The works we consider
here are the papers by Yang et al. (2018) [6], Wang et al. (2019) [8] and Yamada
et al. (2020) [16]. These works propose different techniques for implementing pop-
ulation dynamics of predator and prey, but all share the similarity of making use
of a grid-based world representation for orthogonal movement where no agent may
share the same position at one time.

2.4.2.1 Yang et al. (2018)

In addition to opening up the discipline of predator-systems to reinforcement learn-
ing, Yang et al. (2018) [6] develop a grouping behaviour in predators. The model’s
prey are divided into rabbits and sheep, where only rabbits can be captured by lone
predators – sheep require multiple predators. Thus, as part of the predators’ action
space are the actions: join group and leave group.

In order to capture a prey, a predator must be within the prey’s capture area. A prey
can only be shared among predators of the same group. If there are multiple groups
inside a prey’s capture area, then the group with the largest number of predators
present is the group that catches the prey. The authors claim that the predators
will self-regulate the numbers of members in groups as if the number of members
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in a group becomes too high, then the reward for each individual will be divided
among too many predators. In this way, predators will sometimes leave a flock in
order to form new flocks and potentially find higher rewards.

A downside to this model is that only the predators are trained as agents. The
model contains predators, prey and obstacles; however the prey are implemented as
static objects, which have a small probability of spawning each timestep, as opposed
to modelling the prey as agents. The predators’ spawn are also dependent on a con-
stant rate, which reflects well to Lotka-Volterra, however this way of reproduction
does not aid in bringing the model closer to an individual level based on sexual
reproduction.

2.4.2.2 Wang et al. (2019)

As opposed to solely training the predators in the ecosystem, Wang et al. (2019) [8]
propose the co-evolution of predator and prey. Similarly to Yang et al. [6], agents
share intelligence via a common neural network, but this time the researchers grant
the prey a neural network just like the predator species. Not only is it more realistic
to assume that all animals have a form of intelligence, their results also show that
training predators and prey simultaneously offers more stable populations.

This work introduces stochastic interactions between agents. As opposed to Yang et
al.’s [6] work, predators hunting prey is not always a given. In this model, each cell
in the environment is randomly matched with one of its neighbours, and depending
on the cells’ occupants, an interaction occurs as follows:

X + ∅ → ∅+X
X + Y → X +X
X + Y → ∅+X
Y + ∅ → Y + Y
Y + ∅ → ∅+ Y

where X denotes a predator and Y denotes a prey. When choosing neighbouring
cells all 8 directly- and diagonally neighbouring cells are considered, thus the proba-
bility of a predator eating a neighbouring prey is only 1/8. Predators need to eat in
order to survive, so with this mechanic a predator could potentially starve when it is
in reach of prey. On the other hand, predators are highly rewarded for adjacent and
close prey so they will seek to stay in range to eat, which should render accidental
starvation negligible.

Similarly to the predators, the prey are rewarded for avoiding nearby predators.
The difference between the reward functions of predator and prey is that preda-
tors are rewarded for staying close to prey within a larger distance, meaning that a
predator may be following a prey without the prey’s knowledge.

The addition of trainable prey, which reproduces asexually (albeit automatically),
adds a great realistic aspect to the model. As opposed to Yang et al.’s [6] repro-
duction which spawns new prey anywhere in the world, Wang et al. [8] make prey
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spread locally and thus better approximating nature’s reproduction. However, an
aspect which is still missing from this model is that prey do not need to eat to
survive.

2.4.2.3 Yamada et al. (2020)

Yamada et al. [16] combine some of the ideas from the previous works but also go
further in exploring the evolutionary aspect of agents in predator-prey systems.

Firstly, similar to the idea of the capture area used by Yang et al. [6], this work fea-
tures a predation square which in this case refers to a radius around each predator.
During each timestep, the prey closest to the predator within the predation square
will be consumed.

Secondly, like Wang et al. [8], prey are implemented as trainable agents. However,
the reward function used for the prey is entirely reliant on the shared intelligence
across the species and generations. In fact, the reward function, which gives only a
reward for reproducing and a punishment for dying, offers no way of learning how to
survive during the prey’s lifetime. This raises the question of instinct and whether
it is needed for survival. Even if the prey were to use the same reward function as
Wang et al. [8], there would be no explanation for why the prey inherently escape
the predator.

Next, Yamada et al. [16] are first to introduce sexual reproduction among both
predator and prey. Although this is not implemented through a conscious action
and rather by a probability based on two agents’ (of the same species) distance to
one another, agents are still able to consciously decide to mate by moving closer to
another agent.

Alongside the mating mechanism, the researchers also propose a separate environ-
ment with an evolutionary algorithm containing parameters for speed, attack, and
resilience. In this environment, a proportion of the species is spawned each timestep
with two random agents of that species being picked as the parents (regardless of
their positions). By incorporating the evolution of the agents speed and the preda-
tor’s attack and the prey’s resilience, the researchers find that – just like according
to Darwin’s theory of natural selection [12] – the agents with the traits best adapted
for survival are the ones which remain in the species’ populations.

The results of this evolution show that, as time goes on, the predator’s attack and
the prey’s resilience both increase in order to overcome its adversary. However, as
the prey’s reward function does not provide any lifetime-learning, the prey’s speed
sees no growth: the prey only learns that without resilience, it is likely to die. As
a consequence of this, the predator’s speed only sees initial growth as all its food is
practically stationary.

Although the work’s reward functions pose a problem as they do not promote any
lifelong-learning, Yamada et al. [16] make a great contribution to the field by intro-
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ducing evolutionary algorithms. Furthermore, their analyses of the aforementioned
environments concluded that both environments displayed Lotka-Volterra-like pop-
ulation dynamics.
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3
Theory

3.1 The Animat Model
In this thesis, the terminology animat will be used to describe a simulated animal.
Similarly to previous implementations of agents in predator-prey systems [6, 8, 16],
animats have energy levels which must be maintained above 0 for the animat to
survive. The animats regulate these energy levels by consuming food. These kinds
of consumable food vary depending on the animat, but in this work we consider an
omnivore predator which preys on a herbivore prey, and a herbivore prey which in
turn consumes plants. To help the animats survive, animats make use of a set of
senses and observations to help decide which action to take.

3.1.1 Senses
In nature, animals can observe their surroundings and choose to forage, flee from a
predator or find a mating partner based on various senses. For many animals these
senses are sight, hearing, smell, touch and taste. We simulate senses in animats by
treating the sensory signals as observations which are to be passed to the policy
network.

In our model we leave out the sense of hearing and the sense of taste in order
to limit the amount of redundant observations.
Both sound and taste could in some extent be compared to smell. The former,
could be compared to a smell which disperses very quickly and the latter to a smell
that is only experienced when an object is eaten. In combination with the reward
received for eating a consumable and the smell that the animat experiences at its
own position is a sufficient model for smell. Overall, the taste could be compared
to the following experiences for consuming an edible object:

• good food changes the animat’s energy positively → tastes good
• bad food changes the animat’s energy negatively → tastes bad

3.1.2 Energy
Although real animals have multiple critical needs for their survival such as energy,
water and light, we choose in this work to only investigate the need of energy as a
common need for the animats. Energy is gained by eating and used up by taking
actions such as moving and mating, and also passively to represent a Basal Metabolic
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Rate. Additional energy cost is also consumed when giving birth to a new animat
connected to the orphant’s body mass in comparison to the parent. Lastly, aminats
which has not yet reached a maturity age and are still growing consumes energy for
growing corresponding to the change in its weight. Matching the energy acquisition
and consumption would result in the following equation.

C = M +R +G+ E (3.1)

Where C is the energy consumed, M is the energy used for maintenance (BMR and
performing actions), R is the energy used for giving birth to new animats and G
is the cost of growth. This way of calculating energy acquisition and consumption
goes well together with the energy budget model presented by Sibly et al. (2013)
[17]. The last variable E would correspond to the excess energy which contributes
to the energy reserve. However we only assume that an animat has a maximum
energy level, all energy it consumes it can store and use whenever it needs to, but
it can not store an unlimited amount of energy.

The maintenance energy cost representing the animats’ BMR and cost for mov-
ing is correlated to the animats’ mass and work done respectively. According to
Kleiber’s Law larger animals are more effective than smaller animals as they pro-
duce less heat per mass unit. Kleiber proposes a power of 3/4 when comparing the
heat produced to the animal’s mass [18]. The cost for movement will in this thesis
be equal to the work done by an animat while moving.

It should be noted that although we only consider energy in our work, animals
are not reliant on only one kind of nutrition. Animals require a combination of
water, protein, carbohydrates, sunlight, etc. to survive. Thus in future research,
animats may be better represented with multiple needs which must be managed in
parallel.

3.1.3 Reproduction
Different species reproduce differently in nature. There are various different cate-
gories of asexual reproduction, as well as various mating behaviours during sexual
intercourse. For simplicity, we make the distinction between asexual and sexual re-
production only by whether one or two partners are needed to create offspring. We
also consider the female to always be the partner to give birth to offspring.

Unlike automatic reproduction mechanisms such as the one used by Yamada et
al. (2020) [16], we consider a reproduction mechanic based on conscious decisions.
By using its decision networks, an animat will need to make the decision that it
wishes to reproduce. For sexual reproduction, two animats will need to approach
each other and simultaneously make this decision to reproduce. For asexual repro-
duction on the other hand, an animat may choose to create offspring at any time if
the animat is fertile.

During sexual reproduction, a subset of the parent(s)’ genotypes are mutated and
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passed on to the offspring. For clarity, given the mutation function M , the relation
between the offspring’s genotype G, and its parents’ genotypes G′ and G′′ is seen
below in Equation 3.2.

{g ∈ G | G ⊆M(G′) ∪M(G′′)} (3.2)

In the case of asexual reproduction, G is produced using the same relations between
offspring and parent, however for G′ = G′′.

3.1.4 Growth
When introducing reproduction, the animats should also be able to grow so that
they are not born as large and fertile as their parents. The arguments for imple-
menting growth into the ecosystem is not only because it is realistic. Rather, in
order to more easily preserve the energy within the system by adding new animats
with a smaller mass and also so that a new born animat will not reproduce with its
parents or siblings as soon as it is born.

We consider a tmaturity to be the time needed to reach full maturity. Until this
moment is reached, an animat’s phenotype will be found through G ·m(t) where G
is the animat’s genotype and the maturity ratio m(t) is given by:

m(t) =

t/tmaturity, if t/tmaturity < cborn

cborn, otherwise
(3.3)

We only consider a constant cborn to avoid infinitely small values in the phenotypes
which could hinder the animats’ learning due to not being able to interact with the
environment.

3.1.5 Decision-making
The key idea behind the project that this thesis is based on is that the animats makes
decisions by utilizing four different networks: a policy network, a reward network, a
reflex network and a prediction network. In the scope of this thesis we will use and
combine all but the prediction network. Depending on the animat configuration and
the environment an animat will react to its surrounding by combining the output
signals of these networks combined. The structure of the animat and its decision
network is presented in Figure 3.1.
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Figure 3.1: An overview of an animat’s cognitive network structure

When an animat first receives observations from its environment it first checks if
a reflex triggers. If a reflex triggers the reflex network communicates to the policy
network to behave accordingly. Depending on what action the policy network decides
that the animat takes the animat will either be rewarded or punished based on
the output of the reward network which calculates the reward from the animat’s
homeostatic variables.

3.1.6 Policy Network
The role of the policy network is to choose an action to take depending on the obser-
vations the animat’s sensor receives from its surroundings. The set of observations
s are then used as an input to a neural network which predicts the best action a
based on the set of observations or the animat’s state. The predicted action will
then be performed by the animat which receives new observations based on both
the performed action and the new environment state.
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Figure 3.2: Policy Network Sketch

3.1.7 Reward Network
The focus of one of our research partner groups [19], working alongside us on devel-
oping this software model, was the animats’ reward network. The goal of the reward
network is to calculate the reward that an animat should get in each time step based
on the animats homeostatic senses as shown in Figure 3.3. The reasoning behind
this approach is that an agent does not need to be rewarded for every task it ac-
complishes, but instead be continuously rewarded as a consequence of accomplishing
tasks.

Figure 3.3: Reward Network Sketch

The reward that an animat receives is given by the difference in happiness given in
Equation 3.4.

rt+1 = happinesst+1 − happinesst (3.4)
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Where happinesst is the homeostatic state that is received from combining different
utility functions as in Equation 3.5.

happinesst(Ht) =
∏
h∈H

(ah + whuh(ht)) (3.5)

The parameter Ht is a set of homeostatic variables {h1, h2, ..., hn} at time step t and
uh is a utility function corresponding to the homeostatic variable h. The weights wh
are used to change how big of an impact a certain homeostatic variable h has on the
happiness of an animat. Finally, the variable ah is a constant for each h ∈ H. In
the scope of this thesis we consider only the logarithmic and linear utility functions
as presented by Kleve and Ferrari (2021) [19].

The difference between using this reward network compared to using extrinsic re-
wards may appear subtle, but it allows us to more closely recreate the endorphins
excreted by the brain for feeling good and happy. As endorphins are not exclusively
released upon finishing a task, but rather continuously, we wish to simulate this in
the animats. The basis for the reward network is thus happiness, and happiness is
in turn a function of regulating the animat’s homeostatic needs.

3.1.7.1 Homeostasis

The homeostatic variables that are used to compute happiness may be either critical
or non-critical. The happiness of an animat depends on how far the perceived values
of the homeostatic variables are from the desired states. A non-critical homeostatic
variable that is far from its desired state will cause low happiness in an animat, but
a critical homeostatic variable which is too far from its desired state may even cause
death.

In our animats we consider two homeostatic variables, one critical and one non-
critical. We consider energy as a critical need which may be increased through
eating, and decreases over time or by taking certain actions. We also consider
libido as a non-critical need which increases over time and decreases only if the
animat mates. The domains of energy and libido are [0, 1], with the desired levels:
Denergy = 1 and Dlibido = 0. For libido we use the linear utility function, this will
make an animat increasingly unhappy as its libido grows. For energy we use the
logarithmic utility function which will increase an animat’s happiness more if the
animat is hungry, whereas its happiness will increase less if its hunger is already
satiated.

To reach maximum happiness, an animat must thus have maximum energy and
minimum libido. Furthermore, by setting the homeostatic weights wh to different
values, the homeostatic variable which an animat must decide to regulate becomes
even less binary. We consider energy to be more important to the animat’s happiness
as it is a critical value which is needed for survival, we thus set wenergy > wlibido.
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3.1.8 Reflex Network
The reflex network takes an animat’s observations as input and then either forces or
prohibits one or more actions. By using a one-hot encoding from input to output, an
animat can shrink its action space by masking the available actions when it receives
a certain input. Based on the observations given from the animat’s senses, certain
actions are either forced or prohibited for the policy network to choose. The reflex
network is part of the animat’s genotype and so remains unchanged throughout the
animat’s lifetime.

Figure 3.4: Reflex Network Sketch. The output {-1, 0, 1} refers to forbidden,
unmodified, and forced actions, respectively.

Before a new action is chosen for the animat, it checks if it has some reflex cor-
responding to the current observation. If the observation made is connected to a
reflex, the reflex network masks the actions as the corresponding status (forbid-
den/allowed/forced). As only one action is chosen per each time step t, forbidding
an action means that the policy network can not pick that specific action at time step
t and forcing and action means that the policy network can only pick that action at t.

In fact, an output suggesting that an action should be forced is equivalent to for-
bidding all other actions. For the action space A, the action mask can thus be
represented as a set M ∈ {0, 1}A. The mask can now be easily used to recompute
the action probabilities for the available actions – note that a maximum of one ac-
tion can be forced at a time. To find the recomputed action probability P (a) for an
action a ∈ A, we need only do the following:

Pmasked(a) = P (a) ·Ma∑
b∈A P (b) ·Mb

,∀a ∈ A. (3.6)

The action masks from the reflex network thus open up an easy way for control-
ling an animat’s behaviour. This also creates the possibility of simulating reflexes
seen in mammals, such as the diving reflex prohibiting an animal from breathing
underwater, the patellar reflex (knee-jerk), or pharyngeal reflex (gag reflex).
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Methods

4.1 Animat Design

4.1.1 Predator and Prey
In our environments we have two different kinds of animats, a wolf predator and
a goat prey. They differ slightly, but are in many ways very similar. All animats
reproduce, grow and finally die in the same way. However, there are differences
in the set of objects which can be observed by each species and which actions the
animats can perform. The species specific differences are described in the upcoming
subsections.

4.1.1.1 Prey

The prey are modelled as goats that consume different inanimate plant objects. The
set of observable objects for the goat are given in Equation 4.1

Ogoat = {F,G,W} (4.1)

Where F are fruit/plant objects, G are other goats and W is the wolf predator
species. These observables are used for detecting objects by smell, sight and touch.
The actions that the goat can perform is given by Agoat in Equation 4.2.

Agoat = {I, E, F,B, L,R,M} (4.2)

Where I is the idle action (animat does nothing). E is the eat action allowing the
animat to take a bite of a consumable. The following four actions, F , B, L, R are
used to move forward, backward and turning left and right. The last action M is
the reproduce action (mate).

4.1.1.2 Predator

The predators are modelled as wolves. They hunt and prey on the goat animats.
The set of observable objects for the wolves are of similar structure as Ogoat but the
specific objects differs as given by Owolf in Equation 4.3.

Owolf = {M,W,G} (4.3)

The consumable objects detectable by the wolves are the meat objects M . And
similarly to the goat, the wolves can observe friendly animats W (other wolves) and
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hostile animats G (goats). The wolves’ actions are also similar to the ones of the
goats but differs in one important matter as seen in Equation 4.4:

Awolf = {I, E, F,B, L,R,M,A} (4.4)

The only way the wolves’ set of actions Awolf differs from the goat is the attack
action A. This means that the wolves can attack hostile animats and doing damage
to their energy level. Inspired by the attack and resilience traits evolved in Yamada
et al.’s work [16], we change the damage done based on the animats’ mass. A
predator can evolve to deal more damage if it gets a higher mass, whereas a prey
can evolve to receive less damage if it gets a higher mass. The damage dealt is given
by fattack · mpredator

mprey
where fattack is randomly sampled between 0 and a preset value

specific to the predator species.

4.1.2 Senses
Each animat has a set of senses which it can use to make observations regarding its
environment. In this section the implementation of these senses are described.

4.1.2.1 Smell

The implementation for smell is designed for the animats to find the direction with
the closest/most objects of a certain type. Every species in our model is able to
sense the smell of a subset of all objects in the environment. The smell from an
object of any other type is ignored.
The direction of smells is given by:

smell =
∑
i∈E

d̂i
||di||2

,∀i ∈ O (4.5)

where O is the subset of observable object types sensible by the animat, di is the
distance vector between the animat and the object i, and E is the set of objects in
the environment. Thereafter the vector calculated in Equation 4.5 is separated into
a vertical (dfront) and horizontal (dright) component relative to the animat and a
third component dabove telling the animat if it is on an object. This way the animat
will be able to assess whether it needs to turn or keep its bearing to reach/avoid an
object. In the rare case that an animat is equally far from all objects of a certain
type, then the smell will not indicate in which direction the animat should move.
However, since the directions of the objects are divided by ||di||2, this means that
closer objects give a larger impact on where animats are more likely to find food,
friends or foes.
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Figure 4.1: An animat smelling a plant object. Where dfront is the smell magnitude
in front of the animat and dright is the smell magnitude to the right of the animat.

Hence it could be said that the animat’s sense of smell is greedy in that it may
be interested in one close object in direction a, even if there are multiple objects
further away in direction b. However, as odours disperse over time and distance, this
approach is realistic in that it is not uncommon to better sense the smell of nearby
objects as opposed to objects far away.

4.1.2.2 Sight

As natural sight relies on light bouncing off objects onto the retina, this means that
we can simulate sight by using ray casts. In an environment considering all three
dimensions, ray casting would be computationally expensive as animats would need
to be able to see forward, to the sides, up and down. Luckily, as we only consider
two dimensions for movement, animats only require sight forward and to the sides,
i.e. only a few ray casts are needed per animat. We do not consider varying light
levels in our simulations (e.g. day- and night-time) and so, an animat’s field of view
will always register sight.

The implementation of the ray casts are done using ML-agents’ Ray Perception
Sensor 3D component. This gives the animat information about which type of ob-
ject it is perceiving and how far away the object is.

As only a handful of ray casts are used for each animat, it is possible that an
object can hide in the "gaps" between each ray if an animat is too far away to be
detected by the sphere radius which the ray uses to detect an object. Although
this might be a realistic approach as this would simulate an increasing difficulty
detecting objects that are far away.
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In order for the predators to be able to see the prey in an environment that is
full of plants, the plants have been masked out from the objects which the predators
can observe as seen in Figure 4.2. The same assumption has been made for the prey
regarding the meat objects as there is no reason for the prey to be able to see the
meat. Every species’ set of observable objects O for sight are the same as those used
for the sense of smell.

Figure 4.2: The animats’ ray sensors. The wolf at the bottom right does not
observe the green plant object and the goat at the top left does not observe the red
meat object.

4.1.2.3 Touch

As a final external sense, we implement a sense of touch. Unlike the prior senses
however, this sense rarely gives any useful observation to the animat. Touch sends
an observation to the animat with an integer value of how many objects of a certain
type it is currently touching. The reason why the sense of touch is designed in
this way is that objects cannot be distinguished by material or shapes e.g. grass
cannot be identified by its pointy texture. However, an animat may still find a
correlation between the number of nearby objects and the outcome of a certain
action. Touch can thus be a very important last chance for a prey to sense a
predator, and furthermore the sense is vital for indicating when it is possible for the
animat to eat or reproduce.
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4.1.2.4 Homeostatic Senses

Lastly, an animat can also observe its homeostatic variables which are their energy
level and their libido. The sought-after energy level is 1 and is decreasing for each
time step and decreasing more rapidly when an action is performed. The libido’s
sought-after value is 0 and is instead increasing by a certain amount each time step,
depending on mating season.

4.1.3 Evolution
Our animats make use of a simplified version of genotype and phenotype. An an-
imat’s phenotype depends only on time and its genotype, e.g. an animat with the
genes for growing 100 metres tall will grow 100 metres tall unless it dies first. The
only exception to this is the animat’s policy network. By default the implemen-
tation of PPO in ML agents makes use of a shared policy network for each agent
type. Thus each animat species shares a policy network which will be optimized
over generations.

As for contents of an animat’s genotype, there are three categories of variables
which may be inherited and mutated: homeostatic weights, attributes (such as
mass, maximum velocity, etc.) and reflexes. The homeostatic weights directly affect
happiness by changing the impact a homeostatic variable has on the happiness (see
subsection 3.1.7 and subsubsection 3.1.7.1). The genetically-connected homeostatic
weights are the following:

• energy
• libido

The attributes that the animat has can often affect the animat’s survival directly
or the survival of its entire species. If a prey has a higher speed compared to its
predator it might be able to escape a hunt. On the other hand an animat could
ensure the entire species’ survival by having multiple offspring for instance. The
genetic attributes are:

• mass
• max velocity
• size
• fertility
• acceleration
• mating season
• smell radius
• offspring size
• number of offspring

Finally, an animat can inherit any number of reflexes from its parents. This can lead
to an animat inheriting conflicting reflexes which inadvertently dooms the animat.
For example, an animat could have one parent which, by reflex, is incapable of
eating red food and one parent which is incapable of eating green food. If the
animat inherits both these genes in an environment with only red and green food,
the animat would be incapable of eating and starve immediately. On the other hand,
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thanks to mutation, it is possible that the offspring of parents with reflexes is born
without compromising reflexes.

4.1.3.1 Reproduction Cycles

Nature shows at least some degree of seasonality in reproductive periods [20]. Sea-
sons vary depending on the species and multiple mating seasons may occur per year
in some species, but in our model we consider one mating season per year.

4.1.3.1.1 Fertility

Each animat is born with a gene corresponding to its fertility. We consider a male
animat to be equally fertile year-round whereas a female’s fertility changes through-
out the year. To simulate an estrous cycle using this idea, the fertility at timestep t
is found by ft = f · E(t) where E(t) is the function of the estrous cycle. We model
the seasonal estrous cycle according to Equation 4.6.

E(t) = 1
2[

√√√√ 1 + b2

1 + b2 + cos2( 2πt
tyear

+ 2π(Ss + Si))
cos( 2πt

tyear
+ 2π(Ss + Si)) + 1] (4.6)

Figure 4.3: Estrous cycle E(t) where Ss and Si are the seasonal offset for the
species and the individual according to Equation 4.6

We consider an estrous cycle E(t) such that females are more fertile one half of the
year and less fertile the other half e.g. highly fertile during summer and moderately
fertile in late spring/early autumn. As 0 ≤ f ≤ 1, using E(t) from figure 4.3, we see
that ft < 1

2 when the female is not in heat. To allow for generational shifts in the
mating seasons, we introduce a seasonal offset Si which is inherited and mutated
at birth like all other genes. We also introduce the seasonal offset Ss which is used
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for offsetting the species’ fertility and libido changes (more in 4.1.3.1.2). This way
we are able to make our prey mate during autumn/winter as goats do, and make
our predator mate during summer as wolves do. However, we assume equal – but
shifted – estrous cycles for all species to limit the complexity of the model and to
give all species equal opportunities for mating. We also recommend a estrous cycle
for mammals with monthly estrous cycles as seen in Equation 4.7

E ′(t) = max(sin3( 2πt
tmonth

+ 2π(Ss + Si)), 0) (4.7)

Figure 4.4: Another possible estrous cycle in Equation 4.7, more closely related to
the estrous cycles in primates.

In animals with more frequent mating seasons such as primates, monthly peaks of
fertility may more closely resemble the real-life estrous/menstrual cycles. We choose
to not include the estrous cycle E ′(t) from 4.4 in our model as the shorter the mating
seasons, the more difficult it is to identify seasonal reproductive behaviour.

4.1.3.1.2 Libido

In addition to the females’ changing fertility, all animats’ libidos change over time.
To promote mating during the mating season and avoid mating off-season, the libido
can either increase or decrease depending on the season. The libido changes in every
timestep by

cs cos( 2πt
tyear

+ 2πSi)

where cs is a constant for the species. This is true for every animat that has reached
its maturity age tmaturity and has not recently had an offspring (9 months in our
experiments).
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4.1.3.2 Sexual Reproduction

For an animat to maximize its happiness, it must handle all its critical needs as well
as its non-critical needs (see 3.1.7.1). An animal’s libido is a non-critical need, and
in order to satiate its libido, the animat must participate in sexual intercourse.

In order to participate in sexual intercourse, both the animat itself, and its partner
must take the MATE action when staying inside its partner’s reproduction radius as
seen in Figure 4.5. In case there are multiple available partners, as is often the case
in nature, the female animat will choose the male partner with the highest product
of energy and fertility.

Figure 4.5: Two animats of different sex staying within each others reproduction
radius as seen in blue (male) and red (female).

To facilitate the mating, we allow animats to stay available for mating up to
tmating = 5 timesteps after taking the MATE action. We also synchronize the mating
of animats to avoid situations where a less able male is chosen as the sexual partner
when a more able male may still choose to mate. We accomplish this by flagging
every action in each timestep, and only when the number of flags equals the number
of animats present, we match each mating female with an appropriate male within
a distance of dmating.

When animats mate, they receive a reward from the reward network based on their
libido to encourage a behaviour where the species reproduce and avoid extinction.
Thereafter, both partners are made unavailable for mating to all other animats in
order to restrict the number of sexual encounters per animat per timestep. In ad-
dition to rewarding the animats for limiting their libido, a number 0 ≤ n ≤ 1 is
sampled, and the female will create a number of offspring using g(n) given by:
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g(n, fparent1, fparent2) =

1, if n < fparent1 ∗ fparent2
0, otherwise

(4.8)

where f designates the fertility of a parent.

As the need for mating is driven by the animats’ libido levels, upon mating these
levels are to be reset. However in order to push the females to reproduce offspring,
we only reset the libido of females if they are impregnated whereas a male’s libido
is reset regardless of impregnation.

4.1.3.3 Asexual Reproduction

As we use the same framework for both sexual and asexual reproduction, this has
led to a very simplified mechanic for asexual reproduction. Making use of the same
fertility and libido mechanics as in sexual reproduction, an animat may attempt to
mate with itself in order to produce offspring. The key difference between asexual
and sexual reproduction is that an animat reproducing asexually is only rewarded
for successfully creating offspring. But if an asexual animat is thought of as a female
sexual animat, the circumstance for reward is the same.

4.1.3.4 Mutation

Mutation works on all the animats’ inherited characteristics. As the majority of
these characteristics are floating-point numbers, this means that the inherited genes
are altered by a random factor rc between 1− cmutation and 1

1− cmutation
according

to Equation 4.9.

g = g · rc,∀g ∈ Genotype (4.9)

This holds for both the homeostatic weights and the genetically adjustable at-
tributes. However, in the case of the reflexes there is a probability 1/cmutation that
a new reflex is created.

4.1.4 Age
An animat’s age is defined as the difference between the number of time steps t
passed since the simulation’s beginning and the time step of the animat’s birth
tborn, i.e: age = t− tborn. The age is necessary for both newborn animats’ maturity
and later, its possible death from old age.

4.1.5 Growth
In order to preserve energy in the system and stop animats from directly mating
with its parents or siblings, newborn animats are born infertile and smaller than
their parents as in Figure 4.6.
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Figure 4.6: A newborn animat and its parent.

They then grow with a constant rate until they reach their maturity age. The cost
of growing is the difference in mass ∆mt in each time step. At the same rate that
the child’s mass is increasing, a number of other attributes grow as well. These
attributes are, among others, the animat’s size, acceleration and maximum speed.

4.1.6 Death
The simulations have either one or two death criteria for an animat to terminate. In
all environments, the animat starves if the energy level reaches 0. The other death
criteria is if the animat reaches a maximum age. It is stated in the environment
whether or not an animat can die of old age.

If a prey animat dies, it drops a meat consumable. This consumable is the food
for the predator, thus the predator must either let the goat starve, die of old age or
attack it before its energy level runs out.

4.2 Advanced Plant Modelling
Plants – i.e. a food resource for the prey – have already been implemented in a
multiagent-based predator-prey system by Wang et al. (2020) [7]. However, accord-
ing to the paper’s plant specification, the plants spawn in any position without a
plant – causing plants to cover the entire environment in only a handful of time
steps. We improve upon their flawed implementation of food in two different ways:
one basic probabilistic spawn, and one more advanced model.

We will use the basic generation of new plant objects in a limited amount of ex-
periments as they are computationally cheap to use and easy to control. A plant
has a small probability of spawning in each timestep, and thus by adjusting the
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probability that a new plant will spawn, the environment can be filled with less or
more food. We will refer to this kind of food object as static food.

In addition to the static food objects, we propose a modelling of plants which spreads
gradually in the environment depending on the other plants in the environment. The
first reason behind this is that the model would serve as a more realistic plant model
for the plants to spread. The second reason is that herbivores might develop a more
natural foraging behavior, as the spreading of their food is more closely related to
how it spreads realistically.

Accurately simulating plants adds computational complexity to simulations, and
therefore it is necessary to consider which aspects of nature may be simplified. Two
assumptions we make for all our plants to reduce the environment’s complexity are
the following:

• Lifetime
A plant of species s lives for ts timesteps and then dies (unless eaten first).
Upon death, the plant is no longer observable or edible.

• Genes
All plants of a species s share a set of genes Gs. Thus, there is no evolution
of plants through mutation or natural selection.

4.2.1 Competition
Plants of different species compete for resources from the soil and the sun, and thus
we wish to model a competition between individual instances of plants. We define
grace radius as all points within a Euclidean distance of dgrace from a plant which
cannot be occupied by any new plants. Furthermore for interspecific competition,
we define hostile radius as all points within a Euclidean distance of dhostile from a
plant which cannot be occupied by new plants of other species.

4.2.2 Spread
Each plant has a parameter tripen during which the plant has not yet matured and is
therefore unable to reproduce. After this, a plant will reproduce asexually to create
a new plant with a probability pfertility, where 0 < pfertility < 1 during each timestep.
If a seedling would be restricted from spawning due to a grace/hostile radius, then
no new position is chosen and instead the reproduction fails. This restriction makes
the spread of plants slow down as the number of plants increases, thus avoiding
explosive and sudden growth.

4.2.3 Grass
We make the assumption that grass may only spread through its roots. To model
this spread, a grass object has a defined spread radius within which the grass can
spread. To avoid that a grass object fails to spawn a seedling due to placing the
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seedling within the grass object’s own grace radius, we randomly pick a distance d
such that dgrace < d < dspread.

To represent the way that grass can be grazed without immediately killing the grass,
we allow grass to be eaten by animats before recovering after trecover timesteps. A
grass object in the process of recovering cannot be detected by an animat, and other
plants are able to grow inside its grace and hostile radii – killing the recovering grass.

4.2.4 Dandelions
We make the assumption that dandelions only spread through its wind-carried seeds.
Similarly to grass, we avoid sampling a position for the seedling within its parent’s
grace radius, however in order to make the spread of faraway of seedlings less likely,
we instead pick a distance d2 such that d2

grace < d2 < d2
spread.

As dandelions do not recover like grass, dandelions are disfavored in the environ-
ment before simulations even begin. However, by giving dandelions a larger grace
radius than grass, dandelions have the chance of stopping grass from growing in
their vicinity.

4.3 Environment Designs
With the many theories used to create our model, we have chosen to perform our
simulations in a number of environments in order to examine different aspects of
the animats’ behaviours.

4.3.1 Pre-training
Although our work’s motivation is to investigate whether evolution is needed to cor-
rectly simulate the population dynamics in ecosystems, we make use of pre-training
to a degree. Nature’s evolution took millions of years, and thus it would be un-
reasonable to make use of nothing but evolutionary algorithms to find the optimal
parameters for reinforcement learning. However, we limit the degree of pre-training
such that our animats do not develop near-optimal behaviour before the main ex-
periments.

Furthermore, pre-training allows us to observe if the animats are able to balance
multiple needs with the use of the reward network. As the reward function is a key
part of getting functionally learning animats, it is important to be able to validate
whether we have designed a good reward function through the pre-training experi-
ment.

Unlike in the main experiments, all pre-training animats are immortal. This means
that they spawn again in case they die, and receive an additional penalty for dying.
This design comes from the risk that an animat could develop strategies for regulat-
ing its needs by simply starving itself. Another difference between the pre-training
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and the main experiments is that reproduction does not lead to any offspring as
they would interfere with the two animats’ pre-training (energy and libido levels are
changed as normal).

In order to limit stochasticity in the animat itself, the pre-training animats do
not mutate their attributes, homeostatic weights nor reflexes. Lastly, if not stated
otherwise, every pre-training animat is generated with set value attributes and no
reflexes.

4.3.1.1 Prey

During pre-training we use male and female herbivores in an environment with only
static plant food – food that is randomly generated with some probability pfood.
The reasoning for using static food is that the amount of food is easily controlled
by adjusting pfood. With limited spread of food in the environment, the animats
must learn to find food, as opposed with the advanced plant spread – whose spread
is more difficult to restrict. The importance in using animats of different sexes is
that they will be able to learn how to balance their two needs: their energy level
and their libido.

A pre-trained prey is thus expected to be able to find food through exploration
and it is expected to know when it must eat to survive. Additionally the prey is
expected to, in some extent, learn how to keep their libido as low as possible without
starving.

4.3.1.2 Predator

A pre-training predator is trained in a similar way to the pre-training prey. We
introduce predators of different sexes in an environment with a limited amount of
food. In order to teach the predators that it needs to first attack a prey and then
eat it we split the pre-training into three parts.

In the first part of pre-training, we use goats that do not move and wolves that
are forced to eat whenever meat has been generated after killing a goat. This is
done using reflexes, the goats have reflexes that prevents them from performing any
other actions than idling and wolves have reflexes that forces them to follow food
smell and then eat the food whenever they can smell food or are close enough to
eat. As a second part of pre-training, the wolves’ reflexes are disabled after a set
amount of steps, allowing the wolves to once again perform any action that the
policy network provides for the individual.

The last part of the wolves pre-training consists of the wolves hunting goats that
have pre-trained behaviors. This means that the goats are pretrained to forage and
reproduce, leading to the wolves having to hunt for their prey instead of just collect-
ing the prey. The reasoning behind this pre-training design is to allow the predators
to faster learn that they need to eat their prey after it has been killed. Similarly to
the prey, the wolves must also learn how to balance their energy level by hunting

35



4. Methods

and eating, and their libido by reproducing whenever their libido is high.

4.3.2 Main Experiments
In the main experiments we place a number of either pre-trained prey and predators
in environments containing different types of food. Not all environments contain a
predator species, but in the environments where they are concerned we can expect
an initial advantage for the predator as they have experience in hunting the prey.
Prey on the other hand may have initial difficulties in surviving when chased by
predators, this is where the goal of natural selection’s properties come into play: to
adapt to its environment. The structure of each environment is described in this
section, specific initial values can be found in Appendix A. All values were chosen
by trial and error through multiple tests in order to get the best possible results
with the smallest performance cost.

4.3.3 Lethal Food
To demonstrate the importance of evolution we construct an environment contain-
ing static food i.e. static objects which are spawned, moved and destroyed using
heuristics. These food objects are separated into three categories:

• Good (green) food: animats gain energy upon eating
• Bad (yellow) food: animats lose energy upon eating
• Lethal (red) food: animats die upon eating

This environment contains only herbivorous prey animats, and through the use of
the reflex network we investigate the need for reflexes to survive. The reflex net-
work may contain reflexes to avoid eating a certain type of food after the animat
has chosen to perform the EAT action. This test can in some way be compared to
the evolutional development of a reflex like the dive reflex which hinders mammals
to breathe underwater, saving them from possibly drowning. Through evolution,
reflexes hindering the animats’ survival should go extinct and only reflexes favoring
the survival of the animats should remain. Similarly, the animats without reflexes
should be unable to survive due to the presence of lethal food.

The animat can sense which food is which by its color which is then sent to the
reflex network which decides whether the animat is allowed to eat the specific food
it is standing next to. At the start of the simulation there are goats which cannot
eat good food, goats which cannot eat bad food and goats which cannot eat lethal
food. The good food is represented by its green color, the bad food by its yellow
color and the lethal food by its red color as seen in Figure 4.7.
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Figure 4.7: A prey animat with good (green), bad (yellow) and lethal (red) food.

4.3.4 Grass & Dandelions
Finally, we propose environments using the grass and dandelions described in sec-
tion 4.2 and observed in Figure 4.8. We introduce this very simple abstraction of
plants’ spread in nature in order to model how animats affect their environments.
In nature, plants are also affected by the animals which prey upon them. Thus, we
investigate the population dynamics of not only the animats, but also the plants, to
see if the simulations can give rise to multidimensional Lotka-Volterra equations.

We run the simulations with the advanced plant models in three different varia-
tions of this environment: one with only grass and dandelions, one with prey, and
one with predator and prey. This enables the comparison of the plant populations
when preyed upon: fluctuating numbers of prey, and growing numbers of prey. In
the last experiment we want to examine how the predators affect the balance be-
tween plants and herbivores. Additionally we want to observe whether we will see
behaviour resembling stable 3-system Lotka-Volterra equations.
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Figure 4.8: Environment with competing grass represented in green and dandelions
represented in yellow
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Results

This section covers the results collected from the pre-training and main simulations
run. Parameters mentioned in this section are more detailed than in the earlier
sections of the paper, however for more exact examples of parameters used, we refer
to Appendix A.

5.1 Pre-training
The first goats to be trained were trained for a bit more than 80 000 time steps. In
this environment the goats learned to forage really well and achieved some balance
between their energy and their libido. The goats’ energy levels never reached 0
after approximately 10 000 time steps and they learned to reproduce regularly after
30 000 time steps. However, the amount of food available in the environment was
decreased as the simulation went on, making the access to food scarce in the later
parts of the training. This caused the goats to learn a behaviour promoting idling
in order to save resources and wait for new food to spawn which can be seen in
Figure 5.1.

(a) Energy and libido’s effect on reward (b) Number of actions performed in the
last 40 000 time steps

Figure 5.1: First pre-training goat showing idling behavior.

Another set of goats were trained which would not have to wait for new food in
order to develop a more active foraging behavior. This set of goats was trained in
a larger environment to better resemble the world they would actually be tested
in which caused them to have greater difficulties surviving initially. However, after
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approximately 40 000 time steps they achieved a behavior promoting both active
foraging and regular reproduction as seen in Figure 5.2.

(a) Energy and libido’s effect on reward (b) Number of actions performed in the
last 30 000 time steps

Figure 5.2: Second pre-training goat with active foraging and regular reproduction.

The first set of wolves was pre-trained on static, immobile goats. For the first 7 500
time steps they had reflexes forcing them to eat whenever they had captured a prey.
This proved to help a lot with training times as they learned much faster not just
to hunt, but also to eat what they captured. Also these wolves started to show
tendencies of balancing, foraging, and reproduction as seen in Figure 5.3.

(a) Energy and libido’s effect on reward (b) Number of actions performed in the
last 5 000 time steps

Figure 5.3: Pre-training wolves training on static goats.

When the wolves continued to train on the moving goats they had an easier time
surviving due to their acquired skills from the first pre-training on static goats. Here
they showed clear abilities to satisfy both their energy level and their libido seen in
Figure 5.4.
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(a) Energy and libido’s effect on reward (b) Number of actions performed in the
last 2 000 time steps

Figure 5.4: Already pre-trained wolves training on goats with set policies

5.2 Main Experiments

5.2.1 Lethal Food
The lethal food experiment showed clear results on how the reflexes helped, or
hindered, the animats’ possibilities of surviving. In Figure 5.5 it becomes clear
that the reflex preventing the animats from eating lethal food (red curve) is directly
necessary for the animats’ survival and the reflex preventing the animats from eating
good food (green curve) is directly hindering. It also becomes clear that even if
the reflex preventing the animats from eating bad food (yellow curve) could be
considered a good reflex it is not necessary for their survival when comparing it to
some arbitrary reflex without any effects in the environment (blue curve). Worth
noting is that an animat can have multiple reflexes at the same time. For instance,
an animat with a reflex preventing it from eating lethal food could also have a reflex
preventing it from eating bad or good food.
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Figure 5.5: The prevalance of different types of reflexes in the prey population
over time.

When comparing the amount of animats with specific reflexes in Figure 5.5 above
to the total number of animats in Figure 5.6 below, we can see that almost all the
animats have the gene connected to the reflex preventing them from eating red food.
It is also clear that the fluctuation and limit in the goat population is due to the
scarce amount of food in the environment. This is an indication that the population
has reached its theoretical limit for which this specific environment supports.

(a) The number of food in the environ-
ment over time.

(b) The number of prey in the environ-
ment over time (plotted separately for
clarity due to scale).

Figure 5.6: Amount of food and number of animats in the environment.

In Figure 5.7 we observe how the longest-living goat in the simulation manages to
balance its needs. It never lets its libido reach 1 and dies after 80 000 steps. The
near-death after 55 000 steps and the increasing difficulty to survive is most likely
due to the lack of food in the environment seen in Figure 5.6.
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Figure 5.7: The cumulative reward and the homeostatic variables of the longest-
living goat.

Animats that reproduce sexually were also compared to those animats that repro-
duce asexually in this environment in order to establish how well each reproductive
method passes on genes. As seen in Figure 5.8, both reproductive methods lead
to surviving animats. However, the asexual animats prove to grow faster and to
a larger population, albeit with a less stable growth – also displaying periods of
decreasing populations.

To further compare the reproductive methods, we create an even harsher environ-
ment (see results in Figure 5.9). We adjust the "bad" food to work in the same
way as the lethal food. This new environment thus contains two species of lethal
food objects. We initiate the animats’ reflexes in the same way as in the previous
simulation, thus any animat created initially could die due to a lethal food object.
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(a) The number of reflex genes in the ani-
mats alive, reproducing through sexual re-
production.

(b) The number of reflex genes in the an-
imats alive, reproducing through asexual
reproduction.

(c) The number of animats alive reproduc-
ing through sexual reproduction.

(d) The number of animats alive reproduc-
ing through asexual reproduction.

Figure 5.8: Amount of animats surviving in the lethal environment

As seen in Figure 5.9, there is now a clear difference in the population dynamics of
the asexual animats and the sexual animats. As previously, the animats with the
gene forbidding the eating of the good food (green), instantly starve to death. The
sexual animats show a stable growth in population and the prevalance of important
reflexes. After roughly 16 000 time steps, all animats in the sexual population have
evolved to have both the reflex forbidding eating red lethal food, and the reflex
forbidding eating yellow lethal food.

The asexual animats show the same tendency as before to reproduce more often
than their sexual counterparts. However, the likelihood of surviving long enough to
reproduce and to mutate the second lethal reflex for an offspring is very small. By
looking at the peak in population at around 5 000 time steps, we see that out of the
roughly 65 animats, around 40 animats have the red lethal reflex and around 20 have
the yellow lethal reflex. There is no overlap between the reflexes which are needed
for near-guaranteed survival, and this explains the following fall in population and
finally the extinction of the asexual animats.
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(a) The number of reflex genes in the ani-
mats alive, reproducing through sexual re-
production.

(b) The number of reflex genes in the an-
imats alive, reproducing through asexual
reproduction.

(c) The number of animats alive reproduc-
ing through sexual reproduction.

(d) The number of animats alive reproduc-
ing through asexual reproduciton.

Figure 5.9: Amount of animats surviving in the double lethal environment.

5.2.2 Grass & Dandelions
When running an environment with only grass and dandelions, the dandelions man-
age to conquer the environment and ultimately eradicate the grass. This is due to
the dandelions’ superior hostile radius, restricting grass’ spread more than grass re-
stricts the spread of dandelions. After only a few hundred time steps, the dandelion
population outgrows the grass population and then slowly prevents the grass from
spreading any further as observed in Figure 5.10.

45



5. Results

Figure 5.10: Competition between grass and dandelions.

When the goats are inserted into the environment, we instead see the opposite ef-
fect of competition between dandelions and grass. This is due to the fact that the
grass plants grow from the roots and may grow back after being consumed. The
dandelions which lacked this protection quickly died out due to the herbivores con-
suming enough of them which both limits the spread dramatically, and lets grass
cover more areas to further restrict the dandelions’ spread. Ultimately, if the her-
bivores consume too much of the grass too, then the species will perish as seen in
Figure 5.11.

Figure 5.11: Population dynamics of grass, dandelions and herbivores. The plant
populations are represented at a scale of 0.1 of their true numbers.

With the decline of the grass population, and the starving prey population, it is
possible for the dandelions to make a recovery in the ecosystem. As the dande-
lions can spread further than the grass, the dandelions are able to quickly spread
throughout the whole ecosystem and thus anew constitute a food source for the
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herbivores. This way, we can observe oscillating populations resembling those of os-
cillating Lotka-Volterra equations. Such a result can be seen in Figure 5.12, however
this simulation differs from that displayed in Figure 5.11 in that a small amount of
plants are assumed to immigrate. With this assumption, the very last dandelion
could be consumed by the goats before reappearing and thriving amidst the starv-
ing animats. However, this assumption is not enough to guarantee the survival of
the herbivores and the oscillating nature of the populations. Which situation arises
depends on the stochasticity of the experiments.

Figure 5.12: Population dynamics of grass, dandelions and herbivores. The plant
populations are represented at a scale of 0.1 of their true numbers.

Generating stable ecosystems with the advanced plant models, herbivores and car-
nivores proved a difficult task. The ecosystems require careful parameter-tuning,
which may still result in unstable environments. This is clear from Figure 5.13
where the predators have become too good at hunting, resulting in them eliminat-
ing the prey population.

Even though the predators become too skilled in hunting in some ecosystems, the
opposite effect shows in others. In Figure 5.14 the prey has become well adapted to
its environment and are able to resist the predators, thus removing any interesting
population dynamics between the prey and predators. Instead we observe popula-
tion dynamics similar to what is presented in Figure 5.12 between the herbivores
and the plant species.
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Figure 5.13: Population dynamics of grass, dandelions, herbivores and carnivores
with a dominating carnivore population

Figure 5.14: Population dynamics of grass, dandelions, herbivores and carnivores
with a dominating herbivore population

The success of the prey’s survival is most likely due to its well adapted attributes seen
in Figure 5.15 which have managed to evolve over time. The increase in mass makes
it incredibly difficult for the predators to kill the prey as the attack damage done by
the predators scale based on the proportion between the mass of the predators and
the prey. Later in the simulation, maximum velocity and maximum force increase
making it even harder for the predators to capture the prey as the predators will
not be able to outrun the prey. When velocity and acceleration (moving force) have
increased enough for the prey to outrun the predators, the mass decreases once
again. The most probable cause for this is that as mass is no longer directly needed
in order to survive, the prey evolves a lower mass in order to save energy and adapt
to an environment with a scarce food supply.
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(a) Genetically inherited mass compared
between herbivores and carnivores.

(b) Genetically inherited velocity com-
pared between herbivores and carnivores.

(c) Genetically inherited moving force
compared between herbivores and carni-
vores.

Figure 5.15: Genetically inherited and mutated attributes of herbivores and car-
nivores.

The final data we analyze is how the age of the animats affect the species’ evolution.
In all prior experiments the animats could theoretically live an infinite number of
time steps. The only factors to limit animats’ lifespans were:

• Predation
• Starvation
• Lethal food

Our reasoning for introducing a maximum age for the animats is to inspect how
death affects evolution. In Figure 5.16 and Figure 5.17 we can see how differently
the same animat species performs when restricted or unrestricted by a maximum
age. The simulations resemble one another on the whole, but show some slight
differences in the genes in Figure 5.18.
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(a) Average age compared between herbi-
vores with- and without a maximum age
limit.

(b) Number of animats alive compared
between herbivores with- and without a
maximum age limit.

Figure 5.16: Average age and population of herbivores with- and without an age
limit

(a) Population dynamics in simulation
without maximum age.

(b) Population dynamics in simulation
with maximum age.

Figure 5.17: Population dynamics in simulations with- and without an age limit

As seen in Figure 5.17, when the animats are restricted by a maximum age, the
population’s growth during the mating seasons is not monotonic. The unrestricted
animat population sees only growth from its new offspring. On the other hand, due
to the value of the maximum age, the restricted animat population faces times of a
loss in population – despite the presence of food. Regardless, the food is depleted
equally and leads to the near-extinction of the species in both simulations. The
second peak in populations also indicates that the times of decrease in population
does not correlate with a higher maximum species population.

For comparison, below in Figure 5.18 a number of genes from the two runs can
be observed. Although the genes are quite different, this may be due to stochas-
ticity and is not necessarily due to the introduction of a maximum age. The sharp
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increase/decrease in the genes of the restricted animat population around time step
14 000 can be explained by the large death toll, thus increasing the impact of the
genes of a select few animats.

(a) Genetically inherited fertility com-
pared between herbivores with- and with-
out a maximum age limit.

(b) Genetically inherited mass compared
between herbivores with- and without a
maximum age limit.

(c) Genetically inherited velocity com-
pared between herbivores with- and with-
out a maximum age limit.

(d) Genetically inherited moving force
compared between herbivores with- and
without a maximum age limit.

Figure 5.18: Genes in run with herbivores compared with genes in run with her-
bivores restricted to a maximum age.

However, by looking closer at the fertility gene, this gene faces near exclusive growth
leading up to the second population peak. The other genes seen in Figure 5.18 face
both ups and downs. With a higher fertility, the species is more likely to remain in
large numbers, despite a large death toll due to age. Fertility is also directly linked
to the success of passing on genes to coming generations, and might suggest that
death plays a role in evolution.
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6.1 Three-species Population Dynamics
Another master’s thesis from our research group [21] focused on analyzing the pop-
ulation dynamics in three-species predator-prey systems. The results from those
simulations showed that the multiagent-based ecosystem simulations of predator,
prey and food may exhibit cyclic population dynamics similar to cyclic three-species
Lotka-Volterra equations. However, our focus on implementing a more realistic re-
production mechanism based on animats’ decision-making makes it very difficult to
balance parameters to recreate similar results. Although Lotka-Volterra equations
may display stable population dynamics, it is equally possible to express deteriorat-
ing ecosystems using Lotka-Volterra equations.

The failure to reliably reproduce cyclic population dynamics for three species as
described by stable Lotka-Volterra equations may thus be due to the parameters
used in our simulations. An example of cyclic population dynamics between preda-
tor, prey, and grass, can be seen in Figure 6.1. Despite the example of a stable
ecosystem, population dynamics can be analyzed even in unstable ecosystems. Fur-
thermore, there is nothing to stop the term "three-species" from designating several
species on the same level in the ecosystems food-chain. Hence, we choose to discuss
the population dynamics of grass and dandelions in our environments.
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Figure 6.1: Example of 3-species Lotka-Volterra indicating cyclic population dy-
namics for predator, prey, and food (credit to Karlsson (2021) [21] for figure).

The competition between grass and dandelions as seen in Figure 5.10 is extremely
one-sided and does not correspond very well to the behaviour of lawns in real life.
Although dandelions do spread relatively quickly and can quickly be seen spreading
in all parts of a lawn, grass is very rarely completely outcompeted. By making
use of an artificial winter which limits spread, and making grass partially resistant
to this winter, we make an attempt at stabilizing our environment. The resulting
interaction between the species can be seen below in Figure 6.2.

Figure 6.2: Example of the population dynamics of plants in the absence of prey.
One year is modelled as 600 timesteps, with winters reducing plant spread by 55%.
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The change in spread depending on seasons is implemented by the simple

spread = (1− sin(t/tyear) · w) · (1− resistance) · spreadbase (6.1)

where w designates by how much the spread will be reduced. As can be seen in
Figure 6.2, this greatly helps the survival of grass in the environment, creating a
more stable ecosystem. However, seeing as the dandelions faced extinction with the
introduction of prey in the ecosystem, understandably the addition of winter does
not help in protecting an already endangered species.

The fragile nature of our environments can be seen in subsection 5.2.2. Due to
stochasticity, our herbivore may or may not push our plant species to extinction
(see Figure 5.11 and Figure 5.12 for comparison). This goes to show that ecosys-
tems can be extremely fragile, and in our case the design of our plants may not
support a herbivore very well. The quick decline of dandelions in the presence of
our prey species could be indicative of how a stable ecosystem may behave when
a new invasive species is introduced to the environment (the environment seen in
Figure 6.2 can be seen as relatively stable as the decline of grass is over more than
a decade of in-simulation time). With our simulations, which produced arguably
unstable ecosystems, we wish to highlight the importance of continued research into
the topic in order to protect nature’s unstable ecosystems.

It should be noted that our grass & dandelions environment demonstrated two-
species population dynamics (see Figure 5.12) in the runs where stochasticity did
not cause the extinction of the plants. As our dandelions and grass are on the same
level in the food-chain, we do not claim that our model demonstrates three-species
Lotka-Volterra population dynamics, as this might be misleading. Yet, we wish
to highlight our results demonstrating similar population dynamics using the prey
species and two different food populations.

6.2 Reproduction and Evolution
In order to get simulations which supply results within a somewhat reasonable time,
a lot of assumptions were necessary. Evolution is very simplified in our model. We
have referred to a gene in this paper as some variable that an animat has which
can be mutated and inherited and corresponds to some attribute. However, a single
gene might affect multiple attributes, or one attribute might be affected by multiple
genes. This means that creating a fully realistic model of evolution would also mean
doing a fully realistic model of an animal’s genetic code which is not feasible in a
simulated ecosystem (at least not with the computers of today).

When comparing many other papers on simulating population dynamics, assump-
tions are made that new agents are generated statistically, either with a set probabil-
ity or based on the current population. In order to create more realistic simulations,
or at least simulations that are more true to nature, it is inevitable to model repro-
duction between animats instead of having the environment create new agents. One
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of the more important takeaways from this paper is that agent-based reproduction
and inheritance appears to work very well for reinforcement learning agents and pro-
poses a good and realistic approach to scaling a population in a multiagent-based
model.

6.3 Reflexes
Based on the results from the experiment with lethal food and the figures 5.5 and
5.6 it is quite safe to state that reflexes are necessary. This is however not true for all
environments as it depends heavily on what assumptions are made. Many ecosys-
tem simulations are not complex enough so that reflexes that control locomotion
matter, as locomotion is often assumed to depend on one single action such as "walk
forward". Whether or not it is realistic to have a reflex not to eat a certain amount
of food, the test case is a proof of concept that the reflex network we designed can
work for multiple purposes. For one, it could simulate a reflex similar to the diving
reflex, which prevents animals from breathing underwater and therefore reduces –
the otherwise great – risk of drowning. Secondly, it could be used to model instincts
and innate behaviours, similarly to how a dog may shake to get rid of excess water
in its fur or how a baby seagull may pick its mother’s beak for food.

However, there are more usages for the reflex network than this. For one, we showed
during the pre-training that the reflex network can be used to help the agent explore
specific states, possibly helping the agent to learn sought-after behaviors as seen in
Figure 5.3. Furthermore, the reflex network can be used to create fully determinis-
tic agents. By always forcing actions based on the observation, one could create an
agent that is, either for its whole lifetime or for a limited time, controlled only by
the reflexes triggered by the agent’s observations.

6.4 Reward Balancing
A part of this thesis was to incorporate the reward network provided from one of
the other master’s thesis groups working on the same project. We used the reward
network in our project to balance the reward between the agents’ critical energy level
and their libido. Even though the libido was not a critical need directly necessary for
the individual’s survival, most animats managed to balance their energy level and
their libido. This shows that balancing multiple needs is possible with this reward
model and could possibly be used to balance many more than two needs.

6.5 Asexual- vs Sexual Reproduction
Analyzing the experiments run in the first lethal food environment (described in
subsection 4.3.3), we see clearly that the asexual animats performed better as a
species. This can be explained by the ease of reproducing asexually as opposed to
reproducing sexually. Considering that a large portion of the initial animats starve
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due to the reflex avoiding good food, the sexual animats have some difficulties in
finding mates quickly. The asexual animats have no such problem and therefore
reproduce faster. However, due to the faster reproduction of the asexual animats,
the animats face multiple phases of starvation after consuming a great portion of
the environment’s good food.

With the higher population and the starvation phases observed, an animat without
the reflex for avoiding bad food is more likely to die than an animat with this reflex
(as needing to learn to avoid bad food will bring the animat closer to starvation). In
such circumstances, statistically over time the number animats with the secondary
gene will grow whereas the number of animats lacking this gene will decrease (due
to the starvation). Thus, by bringing the species closer to the environment’s car-
rying capacity, the asexual animats are able to better develop genes suitable to its
environment.

The sexual animats on the other hand, do not face the same level of internal com-
petition for food as the species does not get as close to the environment’s carrying
capacity. As only the "lethal food gene" is vital for the survival of animats in the
environment, this explains why the "bad food gene" does not spread throughout the
population as quickly as in the asexual population. However the population grows
more steadily than that of the asexual animats, and never runs into any starvation
phases.

These simulations suggest that asexual- and sexual reproduction help animals adapt
to their environments in different ways. Asexual reproduction may rely more on the
ease of reproducing and survival of the fittest compared to sexual reproduction which
may more safely guarantee the survival of the species through reduced internal com-
petition.

When the animats are introduced to a harsher environment containing two lethal
food species, the asexual animats face too much risk of dying, and their technique
of high reproduction and internal competition is ineffective in finding a fitting geno-
type. The sexual animats’ performance is almost unaffected, instead adapting to
its environment as previously. Whether a species is more likely to perform better
using asexual- or sexual reproduction is thus very dependent on its environment.
If the environment faces a far greater threat to an animat’s survival, sexual repro-
duction is more beneficial. If internal competition faces a nearly equal threat to an
animat’s survival, then asexual reproduction may instead be more beneficial for the
well-being of the species.

6.6 Limitations
One of the biggest limitations of this project has been the game engine Unity on
which the project is built. After all, building the ecosystem simulator in a game
engine has both advantages and disadvantages. While we can observe what happens
in a simulation in real-time and generate pretty environments using Unity’s physics
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engine, we are limited by the computation speed possible from running environments
in Unity. Even if it is easier to spot errors or observe whether the environment is
performing as expected, running longer simulations takes a lot of time. This was
proven in the advanced plant model environments.

An advanced plant model environment and a larger animat population environ-
ment performed well for themselves, but when utilizing an advanced plant model
environment with a larger population of animats the simulation became increasingly
slower. But for any environment with many reinforcement animats (more than 100)
the simulations would be incredibly slow. This becomes extremely limiting when re-
searching population dynamics and reproduction as some species may require large
populations and frequent reproduction.

6.7 Ethics
A great risk would be misinterpreting the results given from the simulations that
can be provided from this framework, especially given the state that it is in now. If
one would make conclusions from the simulations and act thereafter it could have
dire consequences. It is very important to be reminded that even if we intend to
make simulations which are as realistic as possible, there are still many assumptions
being made. Furthermore, there is stochasticity not just in the environments that
can be provided from this framework, but also in nature. Therefore conclusions from
these kinds of simulations should be made very carefully.

An ethical dilemma much further down the line is whether it would be ethical to run
simulations if the animats would be too intelligent and considered to have feelings.
Assume there comes a point where an animal could be modelled perfectly digitally
such that everything the animat could feel or think would be the same as for a
real animal. Would it then still be more ethical to perform tests on the animats?
Additionally, if we could model humans perfectly, does that mean that we should,
or would we only cause our digital cousins suffering?

6.8 Future Work
As for the future work of this project there are a lot of ways to improve upon the
already proposed ecosystem simulator. In our reproductive model we have not con-
sidered a pregnancy period during which an animat fetus needs to develop prior to
its birth. This is a very important aspect of mammals however, and the research into
how population dynamics are affected by pregnant animats is so far an untouched
topic. Similarly, the instant births used in our simulations can be replaced with eggs
which must be brooded and hatched.

Secondly, another natural step is to increase the amount of needs an animat needs
to regulate to survive and/or receive a high happiness. An example of this could
be through the introduction of water and thirst, limiting the amount of time the
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animats can spend on foraging which might allow populations further down the food
chain to more easily recover.

Finally, there is the possibility to model more complicated terrain. In our im-
plementation, all movement is done on a 3-dimensional plane. This means that
movement is essentially in 2D. However, there is nothing hindering the introduction
of real 3D terrain. With the introduction of terrains such as mountain ranges or
deserts, environments could be modelled to support different climates and enable a
certain set of actions only in specific conditions.

Although we cannot be sure which direction this area of research will take following
our work, the animat model and the ecosystem simulation project we have worked
on is planned to continue development. Further information about the project can
be found on www.ecotwin.se.
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7.1 Research Questions

7.1.1 Is there a purpose to death?
Does death cause faster evolution?

If an animat lives for a longer time, it is able to pass on its genes for a longer
time. An animat from an older generation is more likely to have genes which are
less adapted to the current environment. Let us assume that a prey possesses genes
which cause slow movement, and predator numbers have recently increased, then
the prey’s genes are ill-suited for survival. As predators in our model directly live
off prey, it would therefore be preferable for the prey species that the older animat
be stopped from passing on such genes in order to reduce the likelihood of another
slow animat being born. Otherwise, the predators would have two potential targets
(the parent and the child) as opposed to one.

In our experiment using maximum age in our herbivore, we found that the fer-
tility gene increased far more than in the fertility gene of the animat unrestricted
by age. The other genes which showed increase or decrease may be explained by
needing to consume more energy to move due to a higher mass, or needing to move
faster to compete with other animats. However, fertility has no direct effect on an
animat’s survival. On the species’ survival however, fertility is highly important,
and with natural deaths caused by a high age we suspect that the higher fertility is
linked to the shorter lifespans. As a higher fertility will require mating fewer times
to procreate, this analysis can hence be used to conclude that death does cause
faster evolution.

Is death particularly important in changing environments?
The maximum age experiments shown in Figure 5.16 and Figure 5.18 assumed a
maximum age of 4 500 time steps for the animats in the Grass & Dandelions en-
vironment. As there are no threats to the animats, introducing death due to age
should pose no risk of extinction to the animats. If instead we consider the lethal
food environment and the results seen in Figure 5.8 or Figure 5.9, given that our
initial animats are created at an age of 750 time steps, this means that all initial
animats would have died at the 3 750 time step mark (leaving 5-10 animats alive)
if the experiment had been done using a maximum age. With the difficulty that
the animats have of sexually reproducing when only a few animats persist in the
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ecosystem, running simulations with the same maximum age settings would greatly
increase the risk of extinction.

As only one of our environment designs supports introducing a maximum age, we
thus have no frame of reference. The food spread in lethal food environment does not
cause as much change to the environment as the Grass & Dandelions environment.
We are thus unable to conclude whether death is particularly important in changing
environments because we only investigate this property in changing environments.

7.1.2 (A)sexual Reproduction
Is sexual reproduction more advantageous for survival in some environ-
ments and asexual reproduction in others?

Whether sexual or asexual reproduction is more advantageous for a species is a very
difficult question to answer. Animals in nature have adapted to their surroundings
in one way or another and have after millions of years come to a point where they
either reproduce sexually or asexually. As our environments lack the complexity
needed to simulate different predators faced over thousands of years and changing
climates, our conclusions should not be taken as absolute truths.

Our conclusion, based on running the lethal food environment (see subsection 4.3.3)
with asexual animats, is that sexual reproduction more effectively passes on instincts
which are needed to survive – represented using reflexes in our work (see subsec-
tion 3.1.8). The danger of the lethal food environment is that there are multiple
ways an animat may die: by eating lethal food, by eating multiple bad food, or by
starvation. This means that the gene which forbids the eating of good food will
doom an animat from birth.

Out of 40 initial animats, 10 of these are born with this deadly gene and will starve
before the mating season. This is the same starting condition as the simulation run
with sexually reproducing animats, however when reproducing the asexual animats
are only able to pass on one useful gene to their offspring. The sexual animats may
pass on two useful genes (the genes which forbid the ingestion of bad and lethal
food). As there is never any combination of two parents’ genes, the animats are
equally likely to mutate a new gene which restrict the ingestion of good food as they
are likely to gain the second useful gene through mutation.

Despite this, asexually reproducing animats are able to efficiently spread both the vi-
tal gene, and the non-vital gene, through increased internal competition and survival
of the fittest. However, by increasing the danger level of the lethal food environment
– by adding a second lethal food type – we find that the lack of all critical reflexes in
the asexual animats puts the species at a much greater disadvantage than sexually
reproducing animats.

The asexual animats in our experiments were thus more successful at passing on
advantageous genes ("do not eat bad food"), but were unable to pass on all vital
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genes ("do not eat lethal food"). From our experiments we can thus conclude: sex-
ual reproduction is more advantageous for survival in dangerous environments. In
safer environments we instead find that asexual reproduction develops a set of genes
adapted to its environment at a faster rate.

7.1.3 Learning and Evolution
Does a combination of learning and evolution make survival in dangerous
environment more likely?

As can be observed in Figure 5.5 and Figure 5.6(b), when faced with an environment
containing lethal food, all animats without the gene preventing the ingestion of lethal
food die. Evolution is thus essential for the survival in a dangerous environment.
Furthermore, by analyzing the prevalence of other reflexes in the population, we can
see that a gene which affects the animat in no way whatsoever is equally present as a
gene forbidding the ingestion of bad food. This shows that although the population
has evolved to avoid eating lethal food, it is nonetheless necessary to learn the
behaviour of avoiding bad food in order to survive. If animats were unable to learn
to survive, this means that the "bad food gene" would be present in the whole
surviving population, however as this is not the case, this means that animats are
able to learn how to survive whilst still having the ability of eating bad food. From
our lethal food experiment we can thus say with confidence that a combination of
learning and evolution does make survival in dangerous environments more likely.

7.2 Contributions
In this work we have foregone the discrete grid-based environments often used to
more realistically reflect the wide range of movement animals are capable of. As
expected, the computational performance is not very well reflected by this improve-
ment. Nevertheless, our project did not focus on optimizing simulation run-times
and as such it is very possible that the environments can be improved and built
upon for future research without the fear of computational bottlenecks.

Additionally, the core of our work concerned the reproduction of animats and the
inheritance of genes. We have implemented a working mechanic for (a)sexual re-
production which depends on homeostasis and decision-making. By connecting sex
to libido and only rewarding animats for regulating these libido levels, we can limit
mating to seasons and limit animats from mating continuously. For reference, when
the animats were offered an extrinsic reward for mating, they would develop a be-
haviour which promoted mating until starvation and death. With our model for
reproduction and evolution, animats are able to pass on reflexes which offer their
offspring an advantage for survival, and allow the population to develop attributes
which provide the best chances for survival.

During this project, a secondary focus was made on creating a food source for the
prey species which is more realistic than previous static implementations. The ad-
vanced plant model described in section 4.2 proposes a simple compromise between
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7. Conclusion

realism and computational complexity. With a goal of creating a dynamic plant
spread resembling that of a few select plants, the idea of investigating three-species
Lotka-Volterra dynamics came naturally. Nevertheless, this goal proved extremely
difficult to attain. Karlsson (2021) [21] estimated the impact of the parameters
used in his experiments and their corresponding values in Lotka-Volterra equations
in order to generate the desired population dynamics. Our model contains a large
amount of additional parameters however, both due to the evolutionary nature of
our animats and due to the more advanced plant implementation. We do not be-
lieve it to be impossible to recreate cyclic population dynamics observable in Lotka-
Volterra, however we are of the belief that such a task requires a large amount of
parameter-calibration.
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A
Appendix 1

A.1 Environment Parameters

Table A.1: Parameters used for the Lethal food experiment with only sexually
reproducing animats

Environment size 75× 75
Number of time steps 100 000
Number of initial food 300

Initial goats with "not red" reflex 10
Initial goats with "not green" reflex 10
Initial goats with "not yellow" reflex 10

Initial goats without reflexes 10
Goat mutation constant 0.1

Table A.2: Parameters used for the Lethal food experiment with both sexually
and asexually reproducing animats

Environment size 50× 50
Number of time steps 14 000
Number of initial food 200

Initial goats with "not red" reflex 8
Initial goats with "not green" reflex 8
Initial goats with "not yellow" reflex 8

Initial goats without reflexes 8
Goat mutation constant 0.05
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A. Appendix 1

Table A.3: Parameters used for the Lethal food experiment with both sexually
and asexually reproducing animats as well as two kinds of lethal food

Environment size 50× 50
Number of time steps 14 000
Number of initial food 200

Initial goats with "not red" reflex 8
Initial goats with "not green" reflex 8
Initial goats with "not yellow" reflex 8

Initial goats without reflexes 8
Goat mutation constant 0.001

Table A.4: Parameters used for the Grass & Dandelions experiment without ani-
mats

Environment size 75× 75
Number of time steps 5 000
Number of initial grass 100

Number of initial dandelions 100

Table A.5: Parameters used for the Grass & Dandelions experiment without preda-
tors

Environment size 75× 75
Number of time steps 55 000
Number of initial grass 200

Number of initial dandelions 200
Initial goats 20

Ratio male:female goats 50 : 50
Goat mutation constant 0.1

Table A.6: Parameters used for the first Grass & Dandelions experiment with
predators

Environment size 75× 75
Number of time steps 55 000
Number of initial grass 300

Number of initial dandelions 300
Initial goats 20

Ratio male:female goats 50 : 50
Goat mutation constant 0.1
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Table A.7: Parameters used for the first Grass & Dandelions experiment with
predators

Environment size 75× 75
Number of time steps 55 000
Number of initial grass 300

Number of initial dandelions 300
Initial goats 50

Ratio male:female goats 50 : 50
Goat mutation constant 0.1

Initial wolves 12
Ratio male:female goats 50 : 50
Wolf mutation constant 0.1

Table A.8: Parameters used for the second Grass & Dandelions experiment with
predators

Environment size 75× 75
Number of time steps 55 000
Number of initial grass 300

Number of initial dandelions 300
Initial goats 40

Ratio male:female goats 50 : 50
Goat mutation constant 0.1

Initial wolves 12
Ratio male:female goats 50 : 50
Wolf mutation constant 0.1

Table A.9: Parameters used for the Grass & Dandelions experiment without preda-
tors but with and without a max age

Environment size 75× 75
Number of time steps 25 000
Number of initial grass 300

Number of initial dandelions 300
Initial goats 20

Ratio male:female goats 50 : 50
Goat mutation constant 0.1

Goat maximum age (if any) 4 500
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A.2 Animats

A.2.1 Possible Reflexes

Prey types:
• Follow Food:

Will cause movement toward food if there is nearby food (unless already in
eating distance of food)

• Not Good:
Forbids the eating of Good Food

• Not Bad:
Forbids the eating of Bad Food

• Not Lethal:
Forbids the eating of Lethal Food

• Regular:
No forced/forbidden actions: the pre-trained agent

Clarification – Follow Food:
• Forces eating food, if standing within eating distance of food
• Otherwise, if food is seen, allows moving/rotating toward the seen food
• Otherwise, allows moving/rotating in the direction of the most food smelled
• Otherwise, allows any action

A.2.2 Animat Parameters

Table A.10: Parameters used for the Goats

Initial age (unless born during simulation) 750
Male expected # of mates 8

Female time to recover after birth 9 months
Maturity age 750
Min speed −0.3
Max speed 10
Rotation 18

Moving force 3
Mass 12

Smell radius 10
Energy move −0.0002

BMR −0.003 ·mass
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Table A.11: Parameters used for the Wolves

Initial age (unless born during simulation) 1000
Male expected # of mates 8

Female time to recover after birth 9 months
Maturity age 1000
Min speed −0.3
Max speed 10
Rotation 18

Moving force 3
Mass 12

Smell radius 10
Energy move −0.00005

BMR −0.003 ·mass
Energy attack −0.0005
Attack force 0.33
Attack range 2

A.3 Food Parameters

A.3.1 Grass & Dandelions

Grass Dandelion
Time to Ripen (months) 0.05 0.075
Time to Recover (months) 0.35 N/A
Time to Decay (months) 0.70 1.25

Expected Seedlings in Lifetime 2.75 2.35
Spread Radius 0.85 3.50
Grace Radius 0.525 0.775
Hostile Radius 0.65 0.90

Winter Resistance 10% 0%
Energy Reward (At Spawn) 0.05 0.03
Energy Reward (When Ripe) 0.075 0.09

Energy Reward (When Decayed) 0.025 0.04
Clarification – Expected Seedlings in Lifetime:
The probability of spawning a new plant per timestep is found by:

fertility = Expectedseedlings
tdecay ∗ tyear

The actual number of seedlings created can thus be higher than the expected number
(see environment, for length of year).
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A.3.2 Lethal Food

Good Food Bad Food Lethal Food
Energy Reward +0.2 -0.2 -1

Chance of Spawning 85% 10% 5%
Food is always spawned according to these probabilities and is independent of the
types of food already present in the environment.
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