

Combining Reflexes and Reinforcement Learning in Evolving Ecosystems for Artificial Animals

Victor Skoglund, Hans Glimmerfors

Supervisor: Claes Strannegård Examiner: Torbjörn Lundh

2021-06-15

Introduction

- Simulating ecosystems with sexual reproduction, inheritance and evolution
- Part of the Ecotwin project
 - Lotka-Volterra Population Dynamics
 - Homeostatic Regulation
 - Reproduction and evolution

Goals

- Investigate the need for evolution <u>and</u> learning in ecosystems
 - Reflexes are created by evolution
 - Learning is done by reinforcement learning
- Is asexual- and sexual reproduction more advantageous for survival in some environments?
- Is there an evolutionary purpose to death?

Simulating Ecosystems

- Historically ecosystems were analyzed mathematically
 - Using differential equations
 - Lotka-Volterra
 - Handle the species on a population-wide level
- Problems
 - Many assumptions made
 - No notion of individuals

$$\begin{cases} \frac{dx}{dt} = \alpha x - \beta xy \\ \frac{dy}{dt} = \delta xy - \gamma y \end{cases}$$

Simulating Ecosystems

- With reinforcement learning we can simulate intelligent individuals
- The hope is to create similar population-wide behaviours
 - But since it is based on individuals, it is more realistic

2

Classical Predator-Prey Systems

- Predator eats prey
- Predator only dies due to starvation
- Prey only dies due to being eaten
- Predator reproduces % of time when consuming a prey
- Prey reproduces % continuously when not eaten
- Only mathematical, thus we only know the ratios of species

• Difficult and time-consuming to find parameters

$$\left\{ \begin{array}{l} \displaystyle \frac{dx}{dt} = \alpha x - \beta xy \\ \\ \displaystyle \frac{dy}{dt} = \delta xy - \gamma y \end{array} \right.$$

Multiagent-based Predator-Prey

- Predator feeds on prey
- Prey feeds on plants (or nothing)
 - Various implementations tried previously
 - In our model prey must eat
- Animats die from starvation, being eaten, or reaching a maximum age

Multiagent-based Predator-Prey

- Animats reproduce
 - Automatically (done previously)
 - Consciously (our model)
- Species representation
 - Prey
 - Static
 - Agent (e.g. our model)
 - Predator
 - Agent

- Artificial animals ("ANImal" + "MATerials")
- Based on biology
 - Decisions made by nervous systems
 - Observations and actions dependent on inheritable genes
- Adapted for computer science
 - Decisions made by neural networks
 - Genes represented as floating-point numbers
 - Combine genes of parents for inheritance
 - Operations possible: sum/product/max/min/etc. (we use one of the parents' genes)

Reinforcement Learning

- Learn through rewards when achieving goals
- Try to find the actions maximizing the rewards
- Two choices:
 - Exploit policy for instant reward
 - *Explore* policy for possibly greater future rewards

Cognition

• Corresponds to nervous systems in animals

- Policy network
- Reward network
- Reflex network
- Prediction network (future research)

Policy Network

- Set of observations are sent to a neural network
- The neural network predicts the action in the observed state with the highest reward
- By adjusting the weights and biases for each node the animat is able to find better predictions

Reward Network

 Based on an implementation presented by Kleve and Ferrari

$$happiness_t(H_t) = \prod_{h \in H} (a_h + w_h u_h(h_t))$$

• Reward given in every step based on happiness

Reflexes

- Innate behaviors
 - Pecking behavior in gull hatchlings
 - Turtle hatchlings journey to the sea
- Reflex actions
 - Knee-jerk reflex
 - Diving reflex

Reflex Network

- Hardwires a stimuli to a certain action
- A reflex may:
 - Forbid a certain action
 - Force a certain action
- If the policy network chose a forbidden action:
 - The second best action is chosen
- If an action is forced:
 - The policy network's choice is ignored

$o_1 \rightarrow a_1 \in -1, 0, 1$ $o_2 \rightarrow a_2 \in -1, 0, 1$ $o_n \rightarrow a_2 \in -1, 0, 1$

Observations - Senses

Animats

- Internal/Homeostatic Senses
- Vision
- Smell
- Touch

• Inform animat of the current state

Homeostatic Senses

- Energy
- Libido

$$happiness_t(H_t) = \prod_{h \in H} (a_h + w_h u_h(h_t))$$

- Energy is a critical sense: if it is not managed correctly, the animat dies
 Happiness from energy is maximized by increasing energy
- Libido affects only happiness: controlled by the animats reproductive cycle
 Happiness from libido is maximized by decreasing libido

Energy

$$C = M + R + G + E$$

C = Energy Consumption M = Maintenance Cost R = Reproduction Cost

G = Growth Cost

E = Energy Stored

Energy

C = M + R + G + E

Animats

Maintenance cost:

- BMR + Movement Cost
- Simulates BMR: energy depletes over time
- Kleiber's Law: BMR = $k \cdot m^{3/4}$
- Cost for moving corresponds to the work performed

Energy C = M + R + G + E

Reproduction Cost:

- Small constant cost for mating
- Energy cost for giving birth corresponds to the difference in weight between the mother and the offspring

Energy C = M + R + G + E Animats

Growth Cost:

- Growth cost corresponds to the change in mass between each time step
- Animats grow linearly until their maturity age

Energy C = M + R + G + E

Energy Stored:

- All animats can use all of their energy at any time
- Can store a fixed amount of energy

Energy C = M + R + G + E

Energy Acquisition:

- Energy gained by eating food
- Each food have a specific nutritional value
- Food can either fill or drain an animats energy depending on if it is toxic

Vision

- Simulated using raycasts
- Each animat has a set of rays spanning in a 108° angle
 - Goats: 26 rays, Wolves: 13 rays
- Each ray registers:
 - Type of object
 - Distance to object
 - Color of the object
- Number of rays heavily affects performance

Smell

- Animats can smell certain objects within a distance r_{smell}
- For each object type within reach, the distance and direction to each object is calculated and normalized
 - (The normalized vector divided by the square of its magnitude)
- The animat perceives the sum of each vector normalized vertically and horizontally to the animat's direction

Reproduction

- Sexual Reproduction:
 - Male and female must choose "Reproduce" action
 - Female's fertility depends on the mating season
- Libido varies depending on season
 - Animats only want to mate when their libido is high
- After creating offspring
 - Libido is lowered
 - Increase in happiness
 - Female is infertile while recovering
 - Represents pregnancy
 - But birth is instant

Reproduction

- Offspring are born small
 - Move slower, eat less, die easier
 - Consume less energy
 - Need to grow before becoming fertile
- Only animats of same species can reproduce

Action Space

- Idle
- Eat
- Accelerate
- Decelerate
- Turn Left
- Turn Right
- Attack (available only to predator)
- Reproduce

Action Space

- Idle
- Eat
- Accelerate
- Decelerate
- Turn Left
- Turn Right
- Attack (available only to predator) -
- Reproduce

- No action is taken
- Eats nearby food

- Damages nearby prey
- Attempts to mate with nearby animat of same species and opposite sex

Goats

- Feed on plants
- Reproduce in autumn/winter
- Male has a very high libido
 - Expected to mate with up to ~8 females per mating season

Wolves

- Feed on meat
 - Need to first kill goats
- Reproduce in a winter/autumn
 - Only for simplicity during tests
 - Real wolves mate in spring
- Male has a medium libido
 - Expected to mate with ~4 females per mating season

Environments

- Lethal Food
 - Unrealistic food spread
 - Similar to previous implementations
- Advanced Plants
 - More realistic food spread

Lethal Food

- 3 types of food:
 - Good Food
 - Replenishes energy
 - Bad Food
 - Depletes energy
 - Lethal Food
 - Sets energy to 0
- The eating of the types of food is restricted by reflex genes

Environments

Advanced Plants

Environments

- Two types of food for prey species:
 - Grass
 - Spreads in nearby area (root spread)
 - Dandelions
 - Spreads to near or far away positions (pollen spread)
- The spawn of new food is handled by food objects
 - Every food object is a spawner
 - New positions are dependent on the spawner
- Plants compete for spawn positions
- Impossible to spawn within a distance r_{hostile} (or r_{grace} if of same species) of another plant

Advanced Plants

Environments

• Food decays over time

Green: grass Yellow: dandelion

Red: decayed grass Brown: decayed dandelion

Reflexes: Asexual- vs. Sexual Reproduction

Results

Reflexes: Asexual- vs. Sexual Reproduction

Results

Comparing animats with a maximum age limit to animats without an age limit

Oooops...

Results

Three-Species Population Dynamics

Three-Species Population Dynamics

Conclusions

Discussion

- Reflexes and evolution is necessary in specific environments
- Sexual reproduction is favored and required for survival in dangerous environments
- Asexual reproduction performs better in non-dangerous environments

- Able to achieve Lotka-Volterra like population dynamics in ecosystem with plants and herbivores
- Difficult to balance population dynamics with more levels of the food chain with this complexity, it requires careful parameter tuning

Future Work

Discussion

- Ecotwin
- Stable three-species Lotka-Volterra with sexual reproduction and evolution
- More realistic gene models
 - Study genes affecting multiple features
 - Study features being affected by multiple genes
- More realistic births
 - Lay eggs
 - Pregnancy
- Introduce actions such as "drink" and homeostatic variables such as "thirst"
- Prediction Network allowing animats to plan their future actions more carefully

